Language grounding for cross-domain policy transfer and spatial reasoning

Karthik Narasimhan OpenAl

Grounding semantics in control applications

Text: instructions or knowledge

Environment: execute actions and observe **Ghosts** chase and try to kill you
 Collect all the **pellets** ...

Input

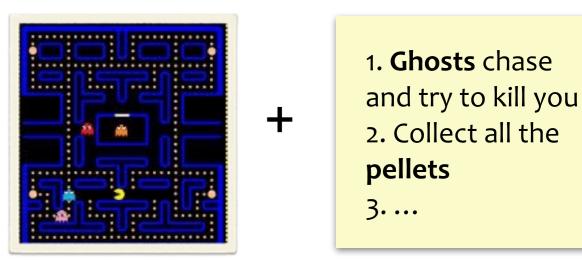
Control Policy: sequence of actions to interact optimally

MOVE LEFT STAY MOVE UP

Grounding semantics in control applications

I. Use language to improve performance in control applications

Score: 7

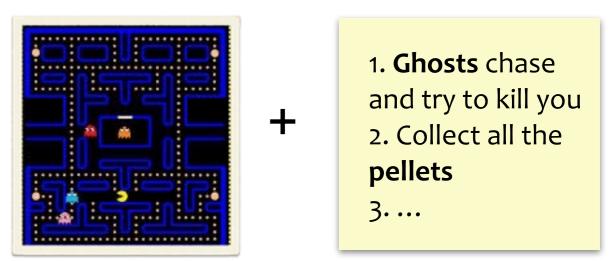


Score: 107

Grounding semantics in control applications

I. Use language to improve performance in control applications

Score: 7



Score: 107

2. Use feedback from control application to understand language

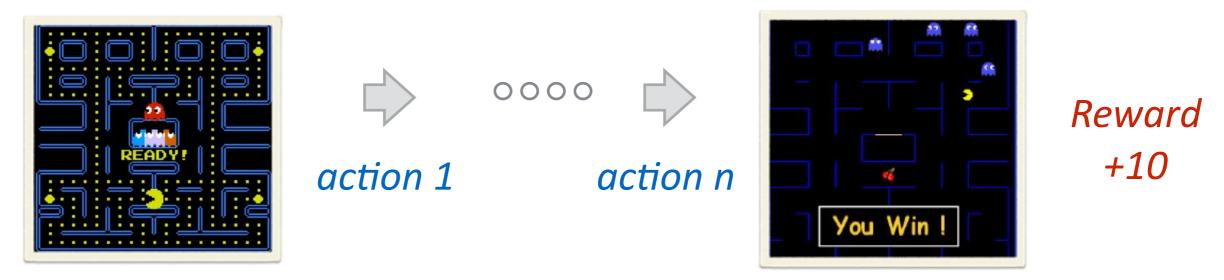
Walk across the bridge

Reward +1

Alleviate dependence on large scale annotation

Reinforcement Learning

• Delayed feedback



 \Rightarrow How to perform credit assignment for individual actions

• Large number of possible action sequences

⇒ Need for effective exploration

Improved language understanding translates to improved task performance

Deep Transfer in Reinforcement Learning by Language Grounding

Karthik Narasimhan, Regina Barzilay, Tommi Jaakkola MIT

Deep reinforcement learning for games

Standard approach: deep Q-learning by acting in the environment Steps to convergence: ~ a few million

Traditional RL framework

Markov decision process

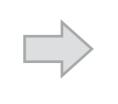
- **State** *s* = Observed Environment
- Action *a* = Move/Shoot/Use sword

State 1

Action

State 2

MOVE RIGHT



Reward +1

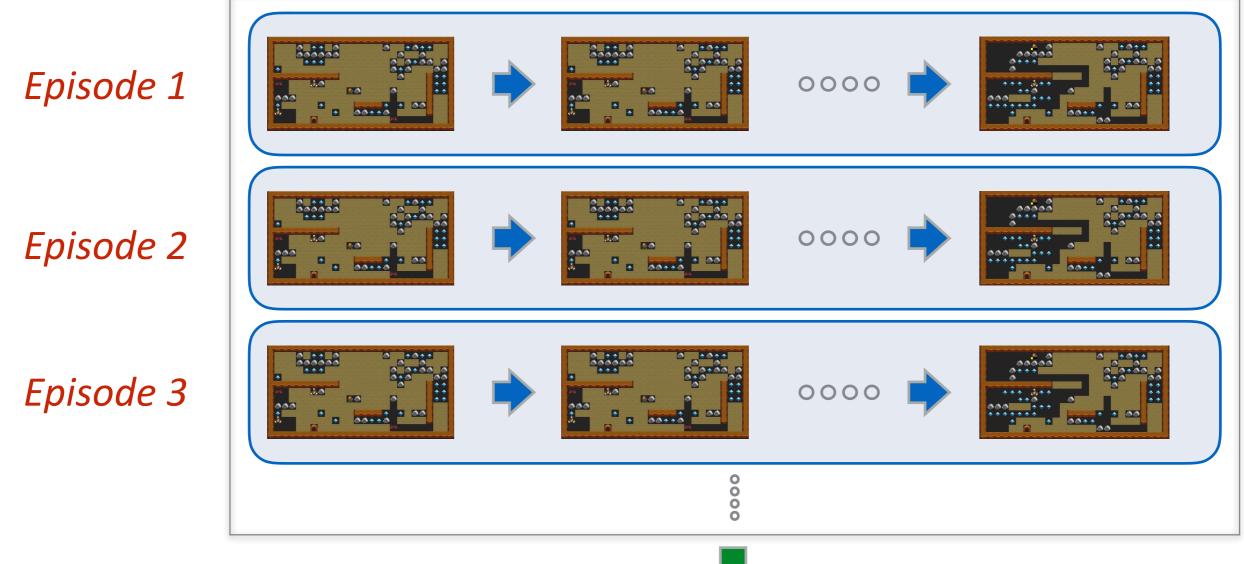
 $\begin{array}{c} \textit{Policy} \\ \pi: s \to a \end{array}$

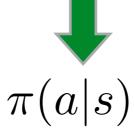
Action value function

Q(s,a)

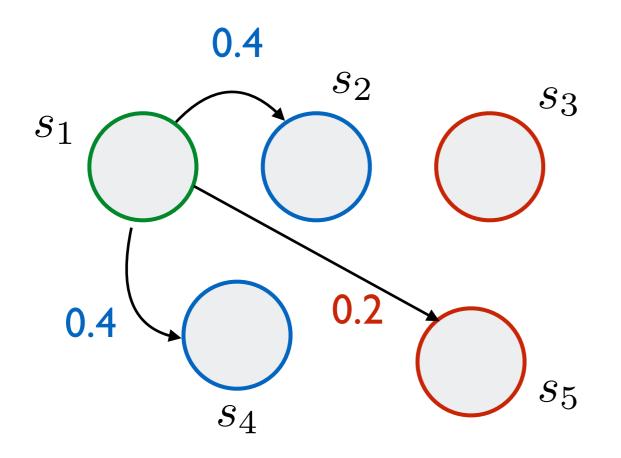
Estimating a policy

Learn from sampled experiences



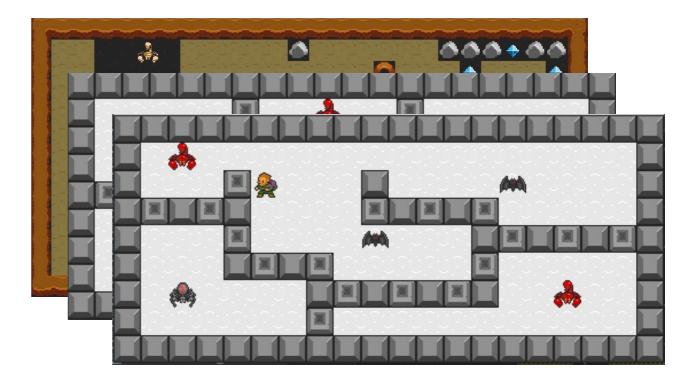


Environment state space



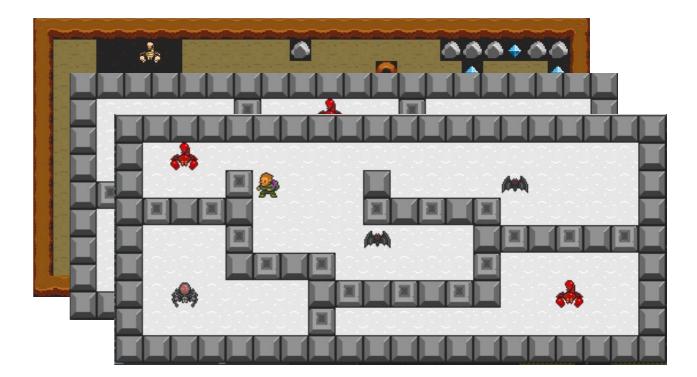
- Learn transitions between states
- Identify good vs bad states

More games



• Each new game requires re-learning from scratch

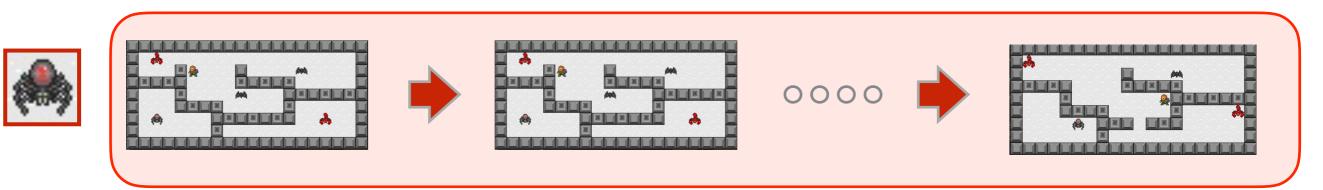
More games



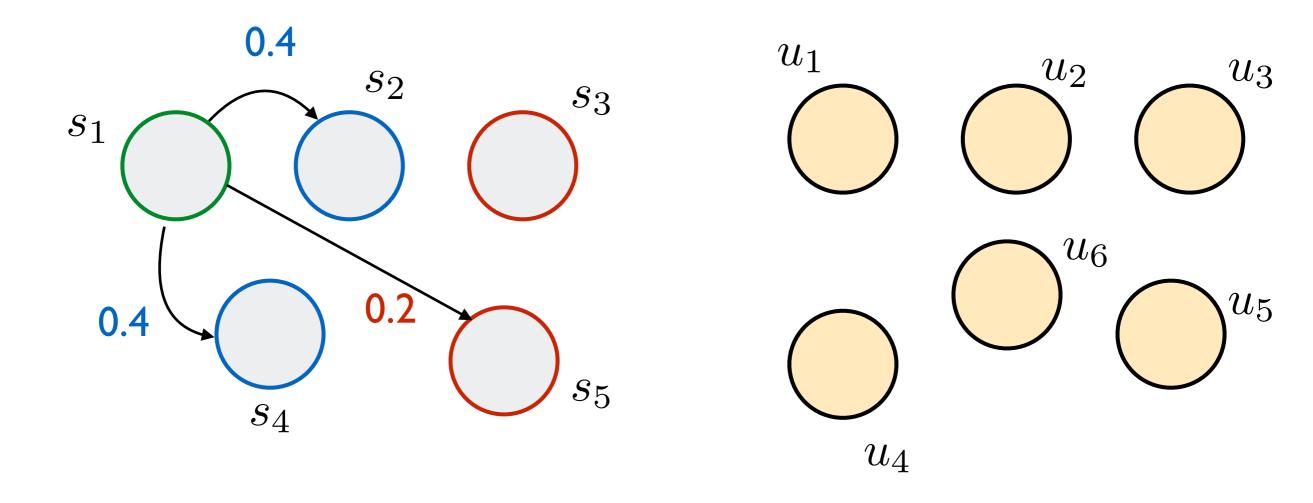
- Each new game requires re-learning from scratch
- Policy transfer: challenging

(Taylor and Stone, 2009; Parisotto et al., 2015, Rusu et al., 2016; Rajendran et al., 2017, ...)

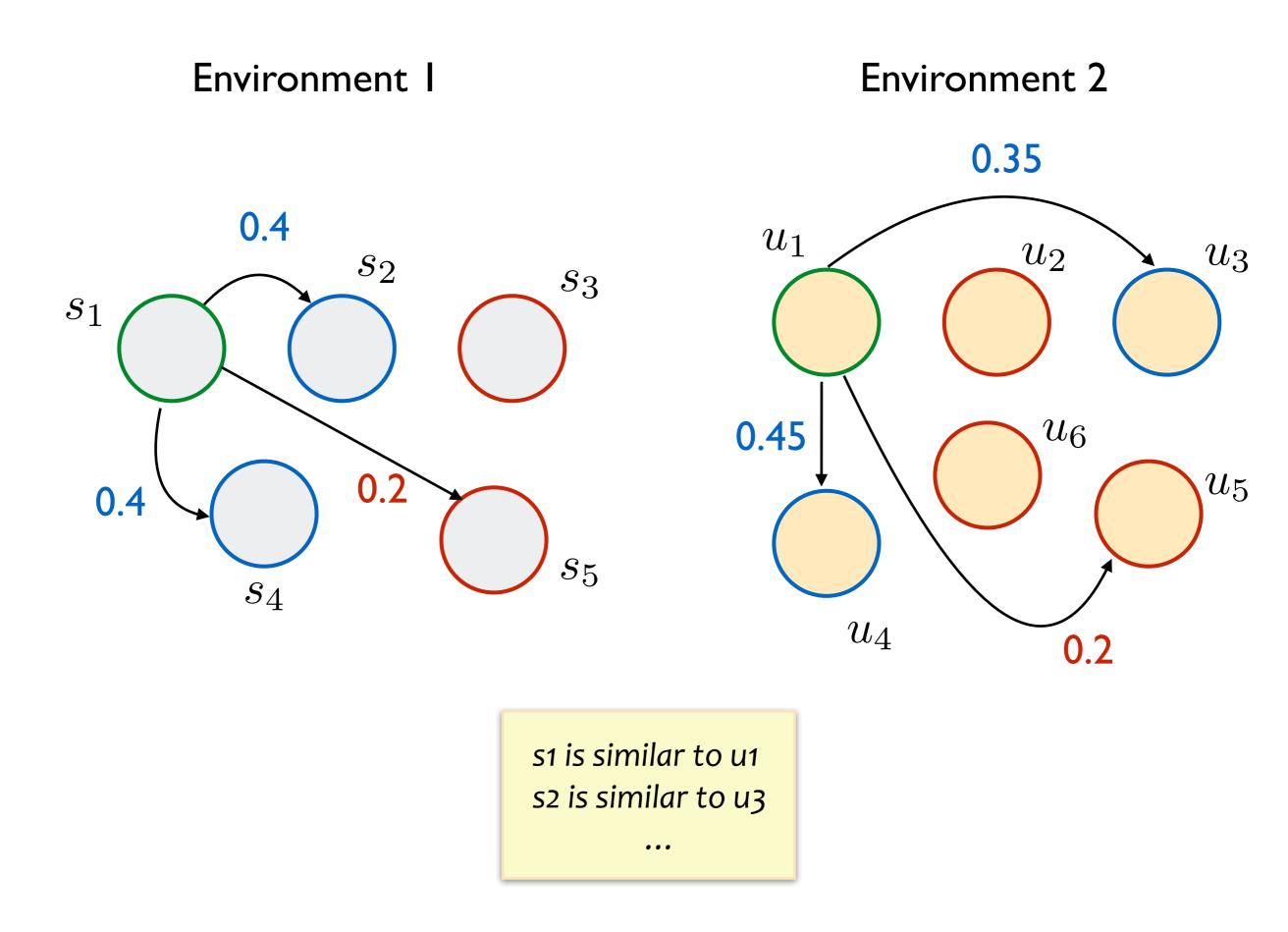
Why is transfer hard?



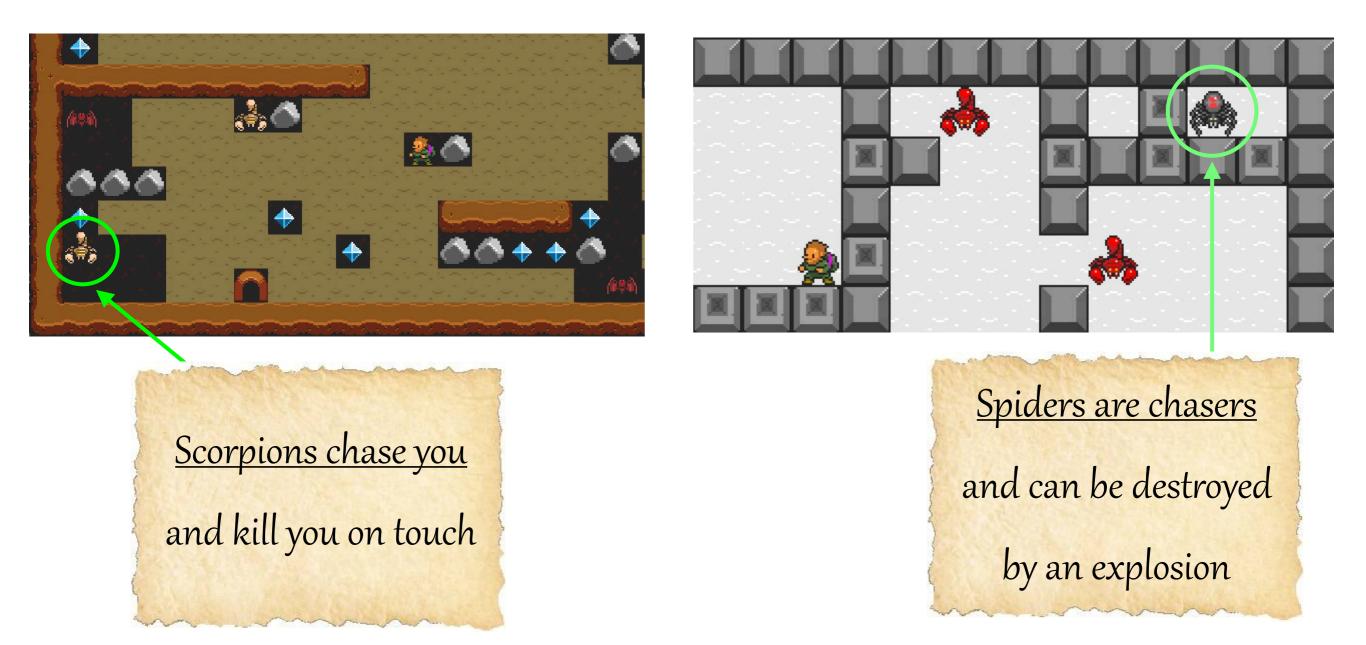
- Different state spaces and actions
- Need to explore new environment to learn mapping
- Incorrect mapping leads to negative transfer



- How do we re-use learnt information?
- Need some anchor

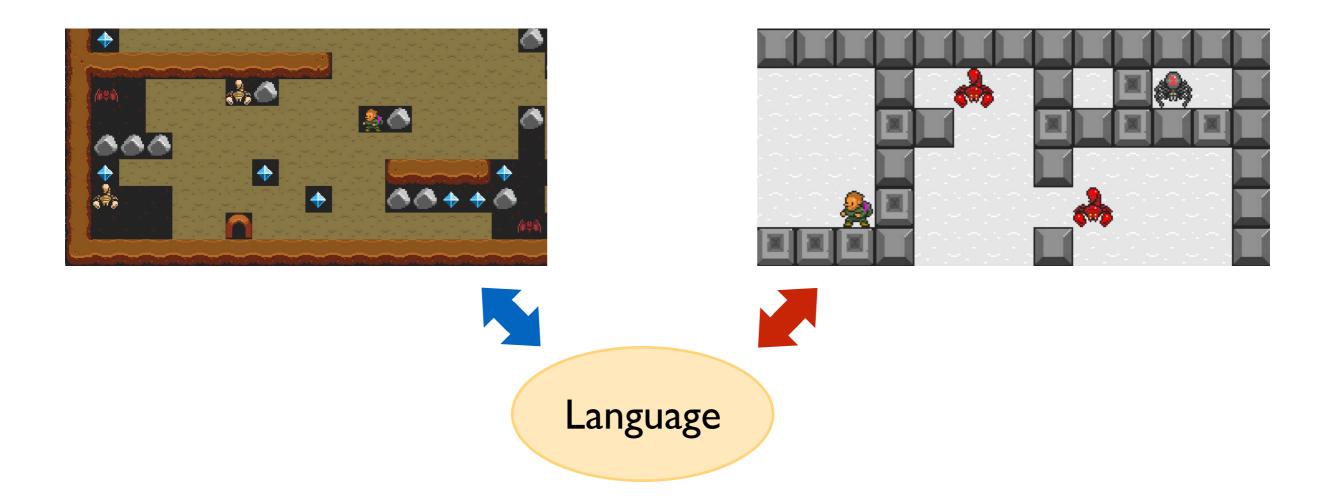


Using text descriptions



- Text descriptions associated with objects/entities
- No mapping between objects in different environments

Transfer through language



- Language as domain-invariant and accessible medium
- Traditional approaches: direct policy transfer
- This work: transfer 'model' of the environment using text descriptions

Model-based reinforcement learning

Transition distribution T(s'|s,a)

State s

Action a

 s'_1

Model-based reinforcement learning

Transition distribution $T(s^{\prime}|s,a)$ and reward function R(s,a)

 s'_1

Value Iteration

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a)V(s')$$
Action
value
function
$$V(s) = \max_{a} Q(s,a)$$

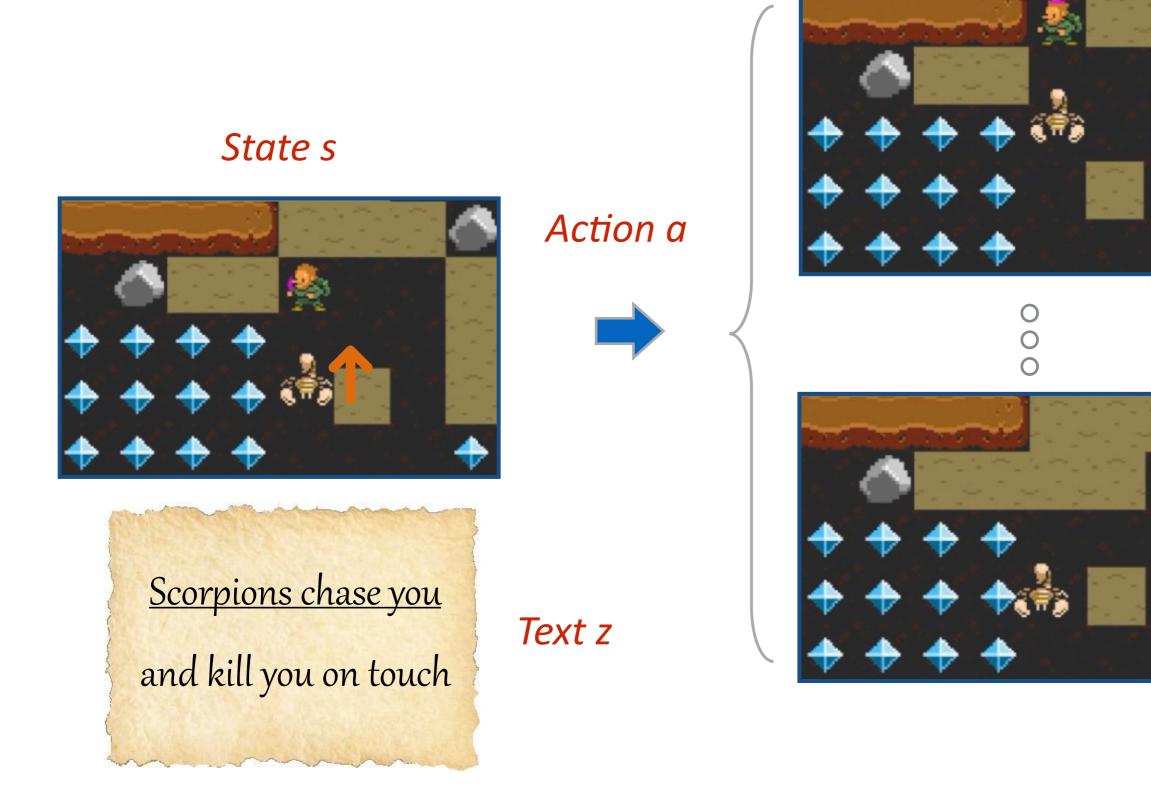
$$\int_{a} Value
function$$
Value
function

Accurately estimating T and R is challenging

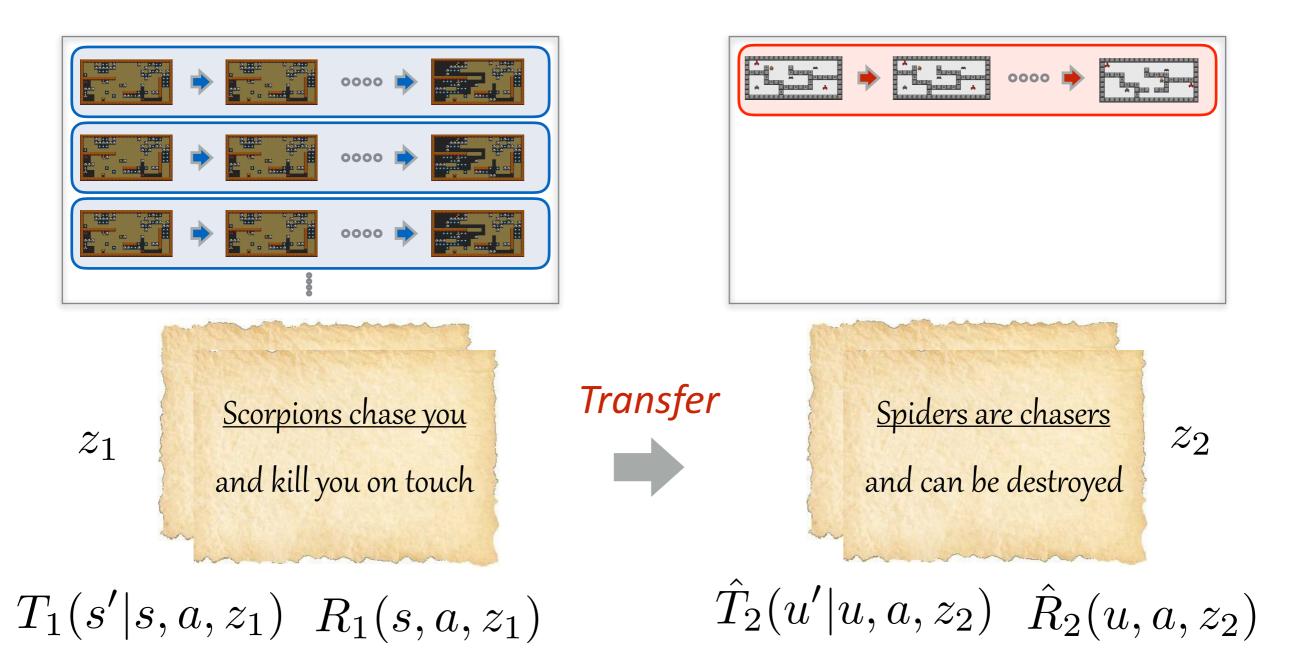
Text-conditioned transition distribution T(s'|s, a, z)

 s'_1

 s'_n

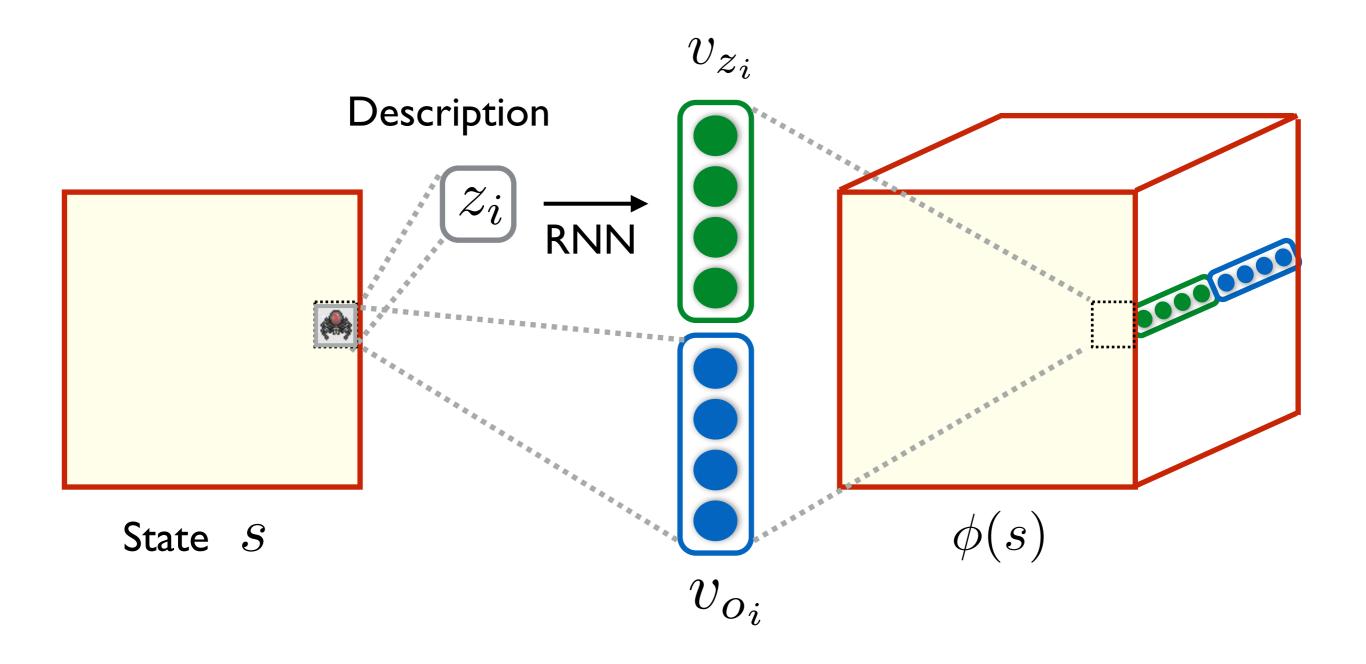


Bootstrap learning through text



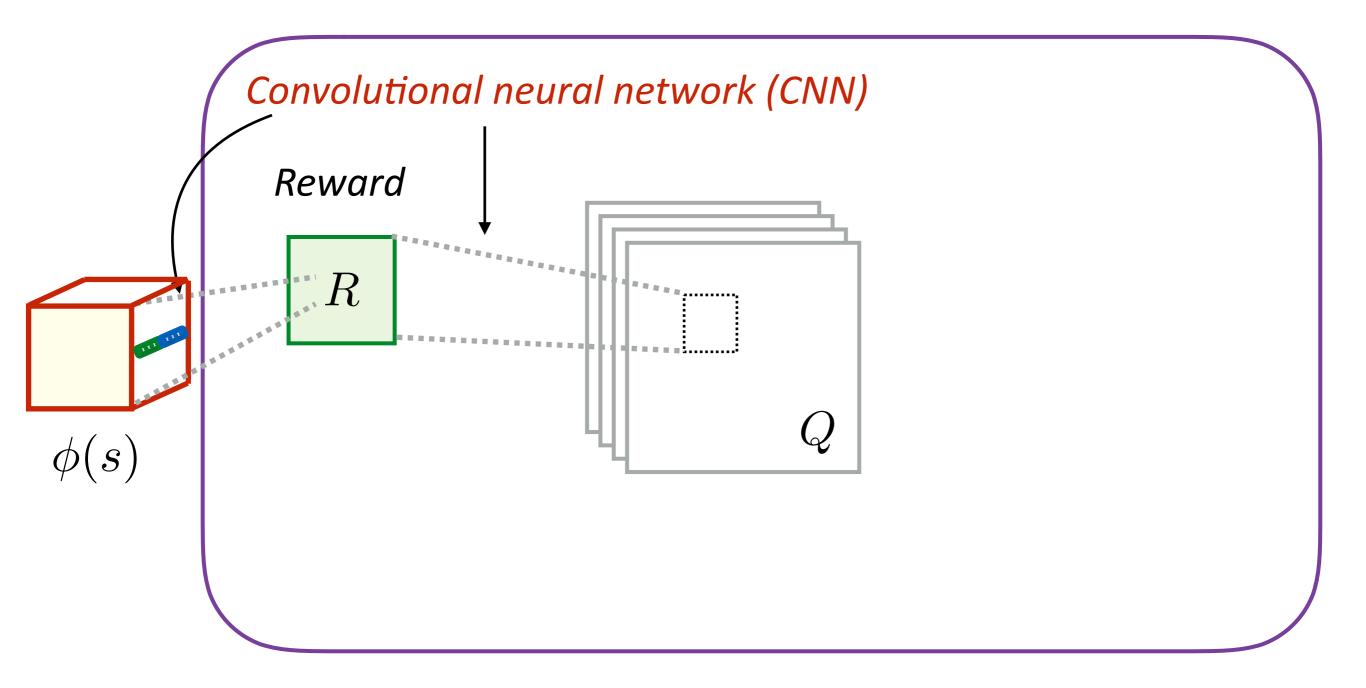
- Appropriate representation to incorporate language
- Partial text descriptions

Incorporating descriptions



Differentiable value iteration

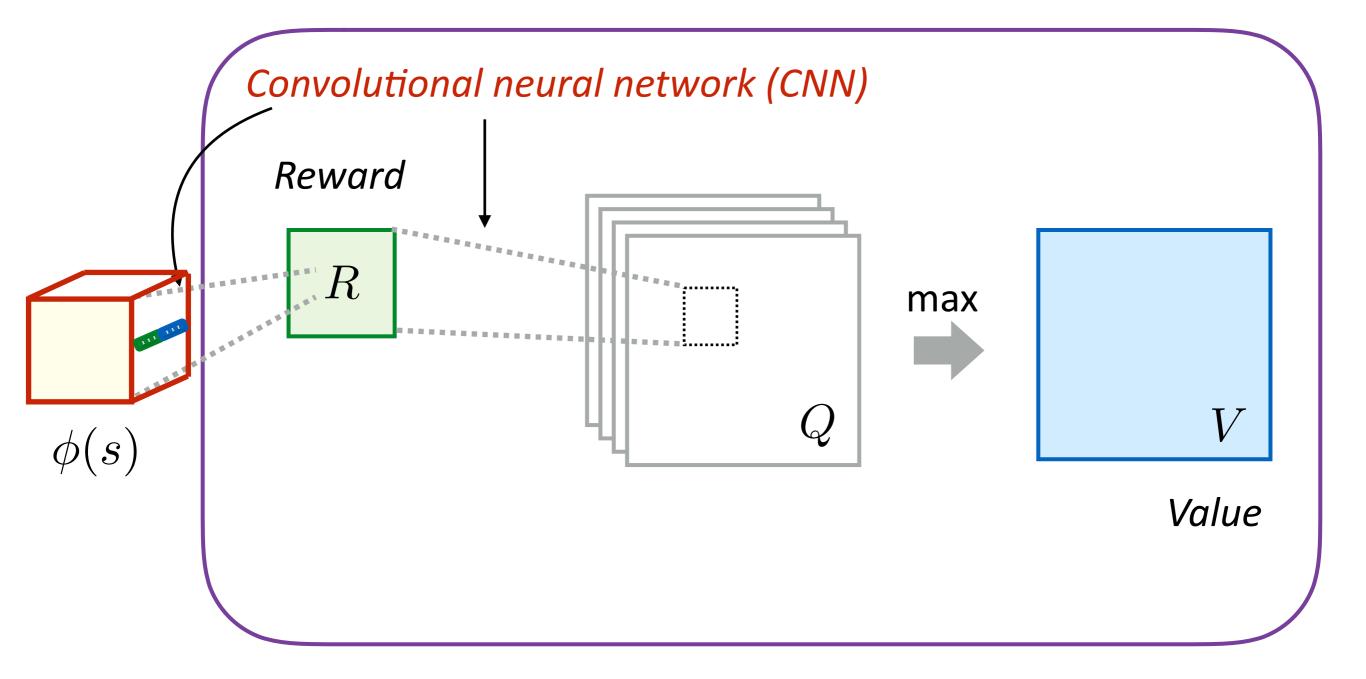
$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) V(s')$$



(Value Iteration Network, Tamar et al., 2016)

Differentiable value iteration

$$V(s) = \max_{a} Q(s, a)$$

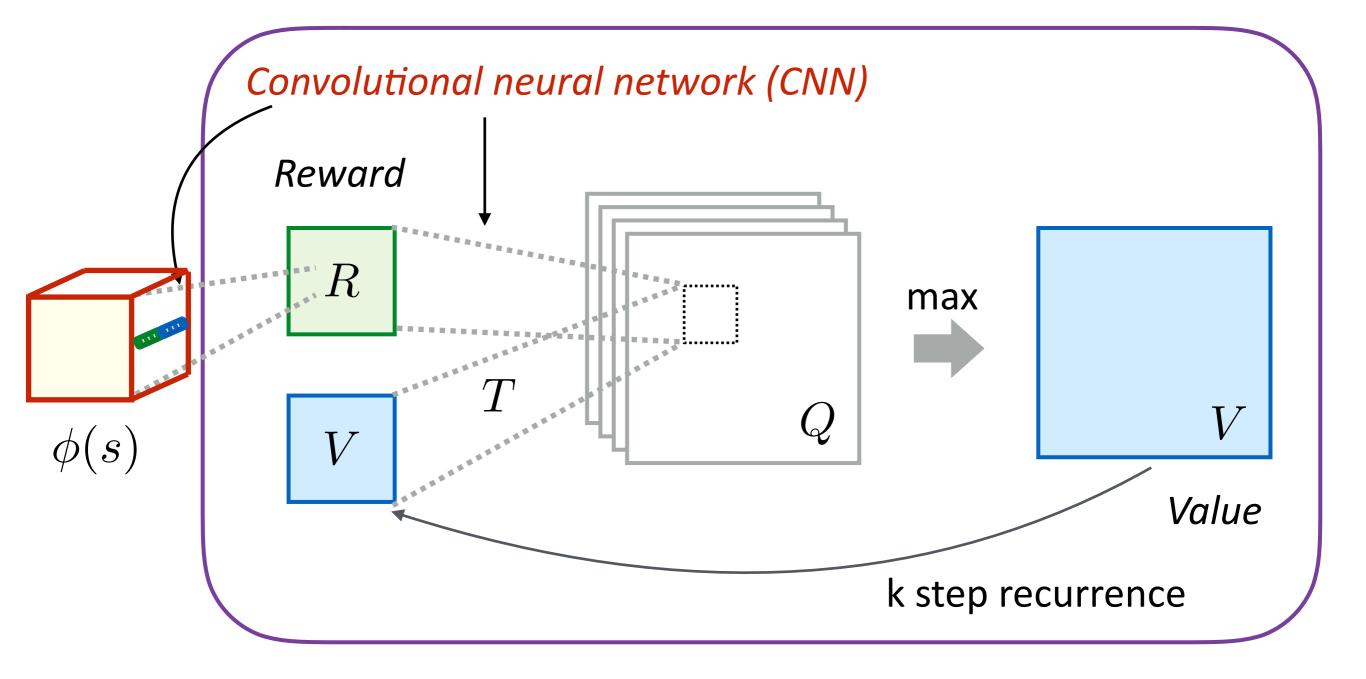


(Value Iteration Network, Tamar et al., 2016)

Differentiable value iteration

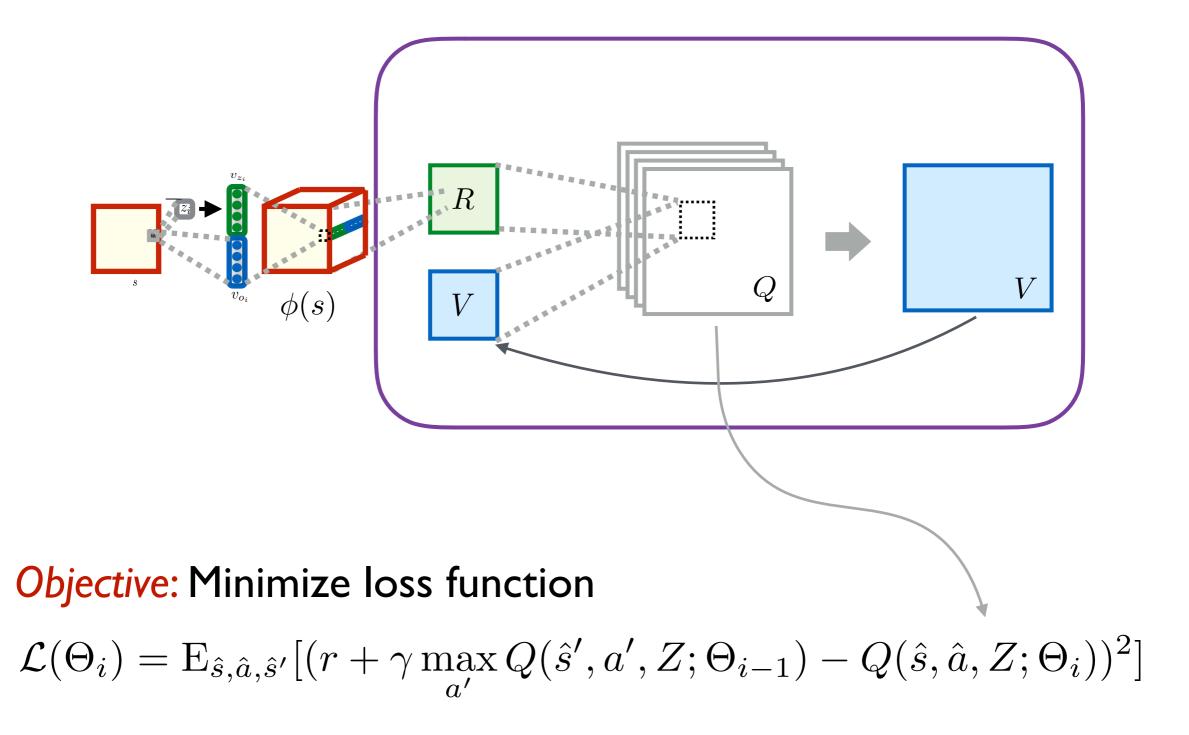
$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) V(s')$$

$$V(s) = \max_{a} Q(s, a)$$

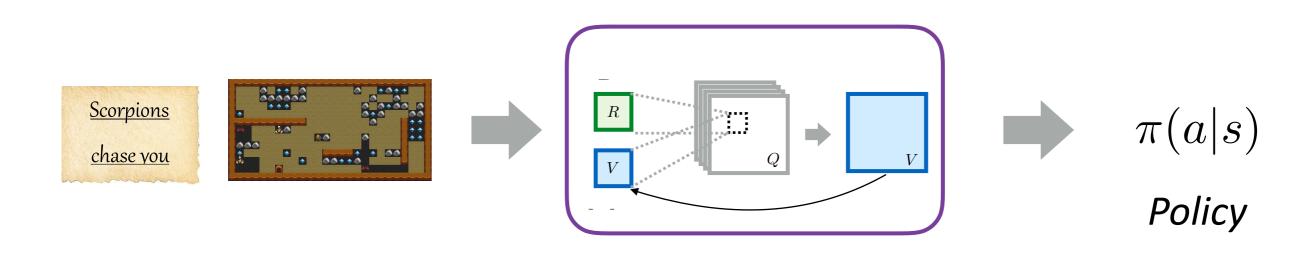


(Value Iteration Network, Tamar et al., 2016)

Parameter Learning

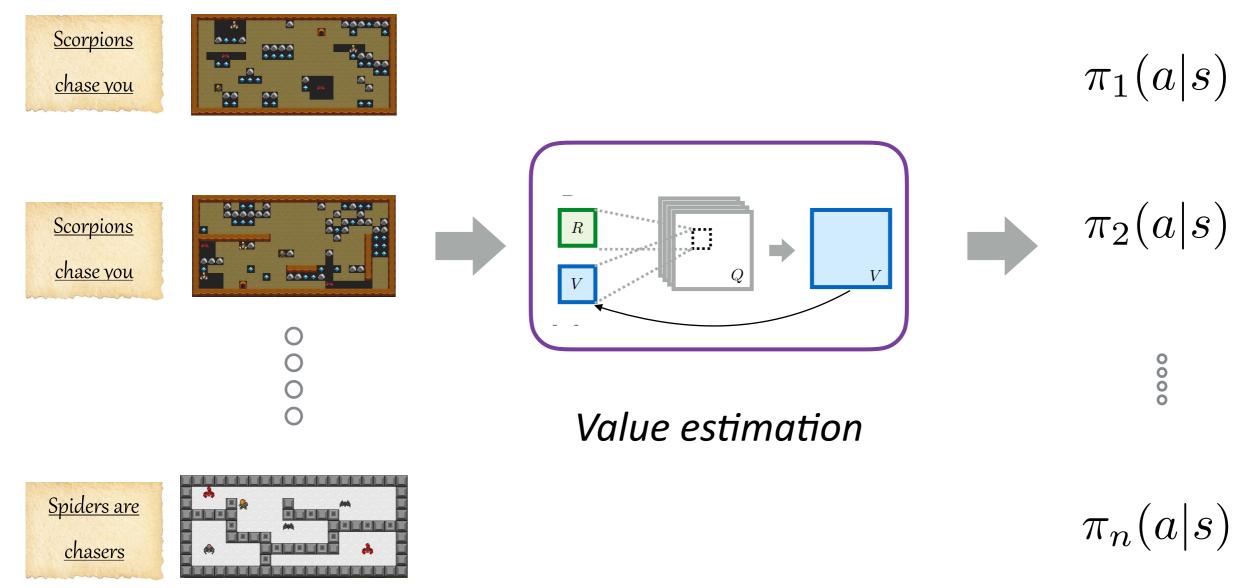


Model-aware policy



Value estimation

Model-aware transfer



Policies

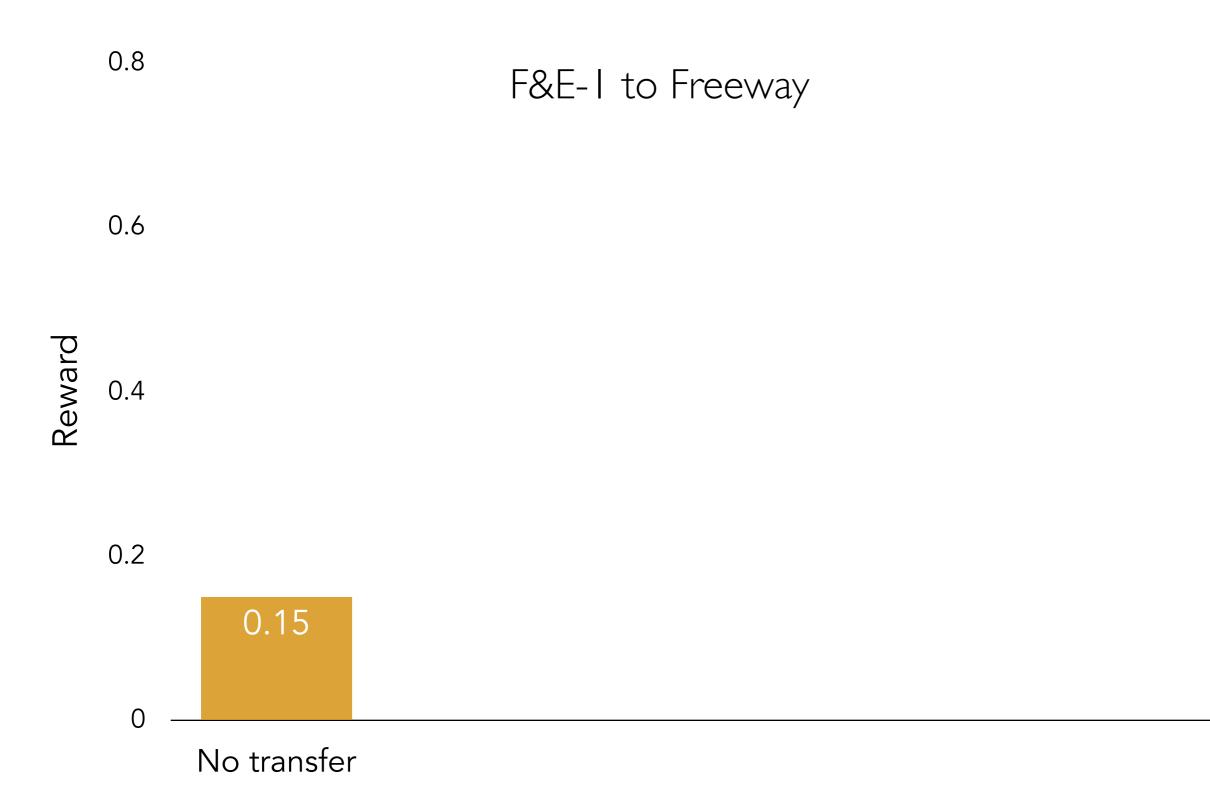
Experiments

- 2-D game environments with multiple instances (each with different layouts, different entity sets, etc.)
- Text descriptions from Amazon Mechanical Turk
- Transfer setup: train on multiple source tasks, and use learned parameters to initialize for target tasks
- Baselines: DQN (Mnih et al., 2015), text-DQN, Actor-Mimic (Parisotto et al., 2016)
- Evaluation: Jumpstart, average and asymptotic reward

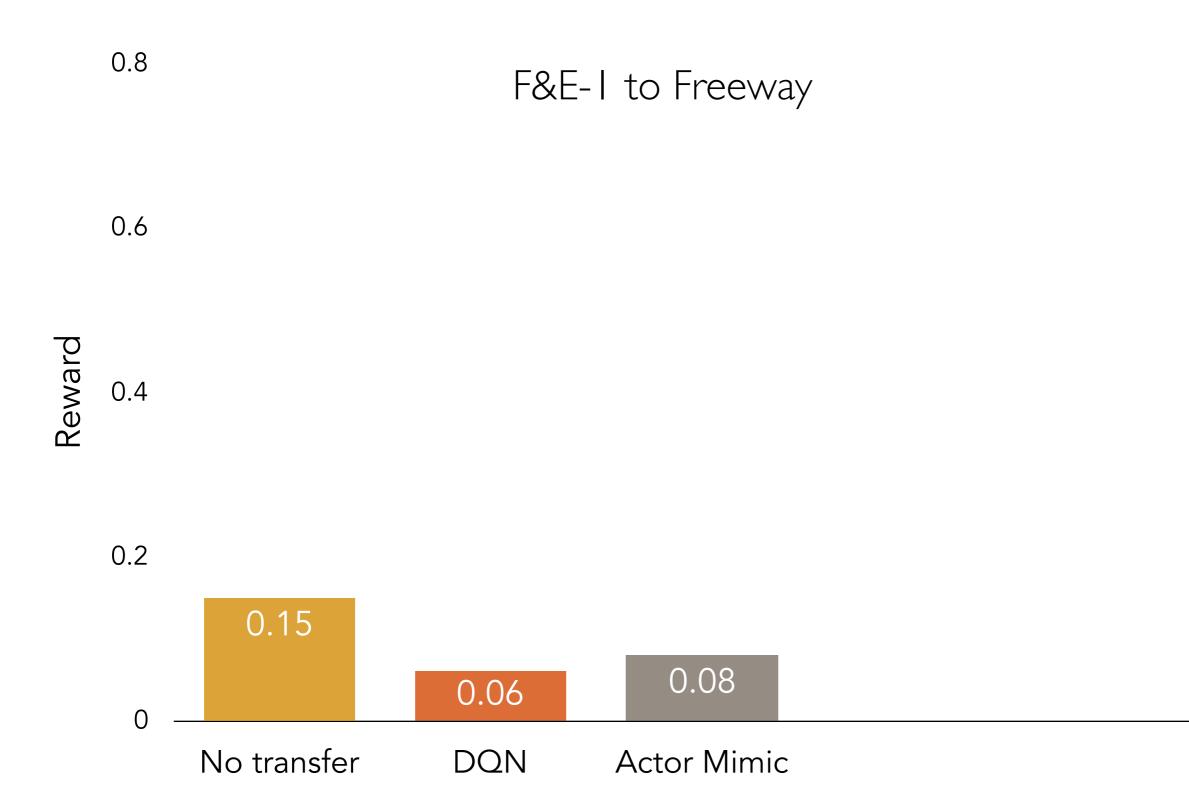
Condition	Source	Target
$F\&E-1 \rightarrow F\&E-2$	7	3
$F\&E-1 \rightarrow Freeway$	7	5
$Bomberman \rightarrow Boulderchase$	5	5

Source and target game instances for transfer

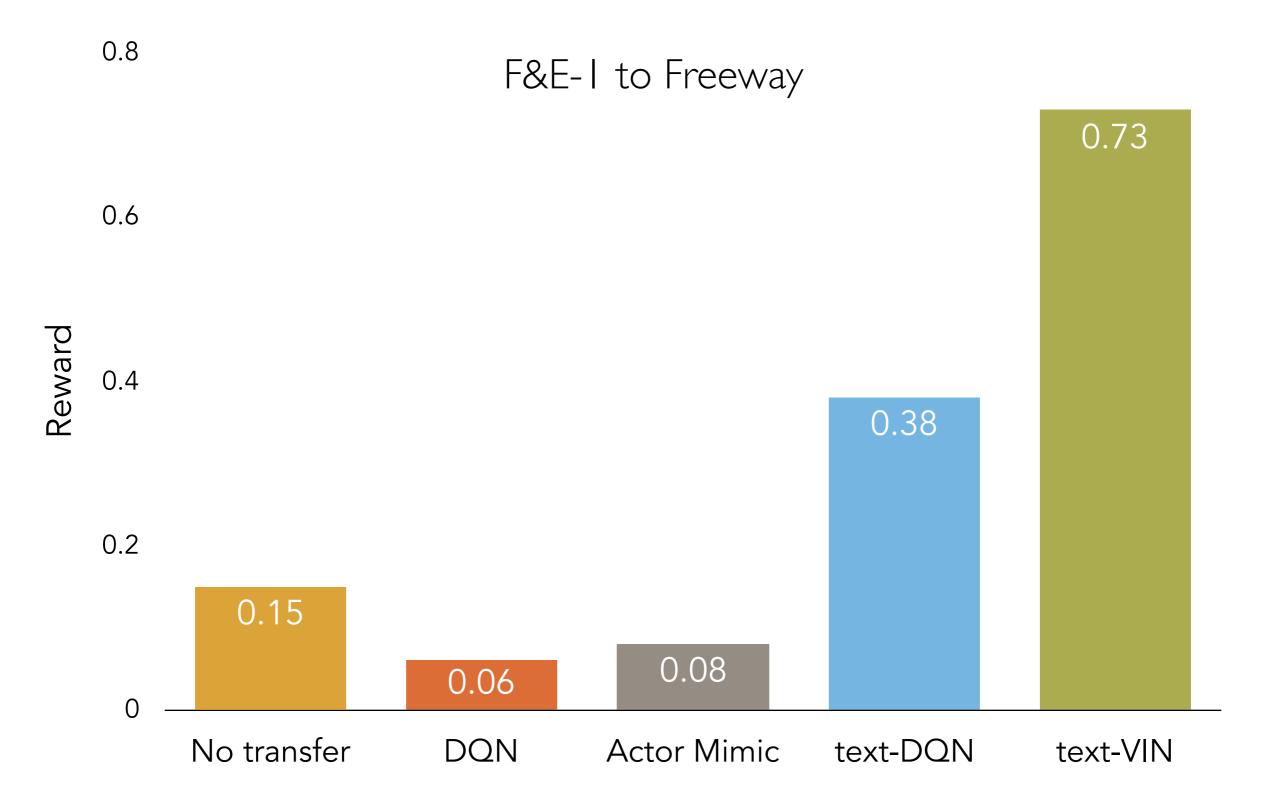
Average reward



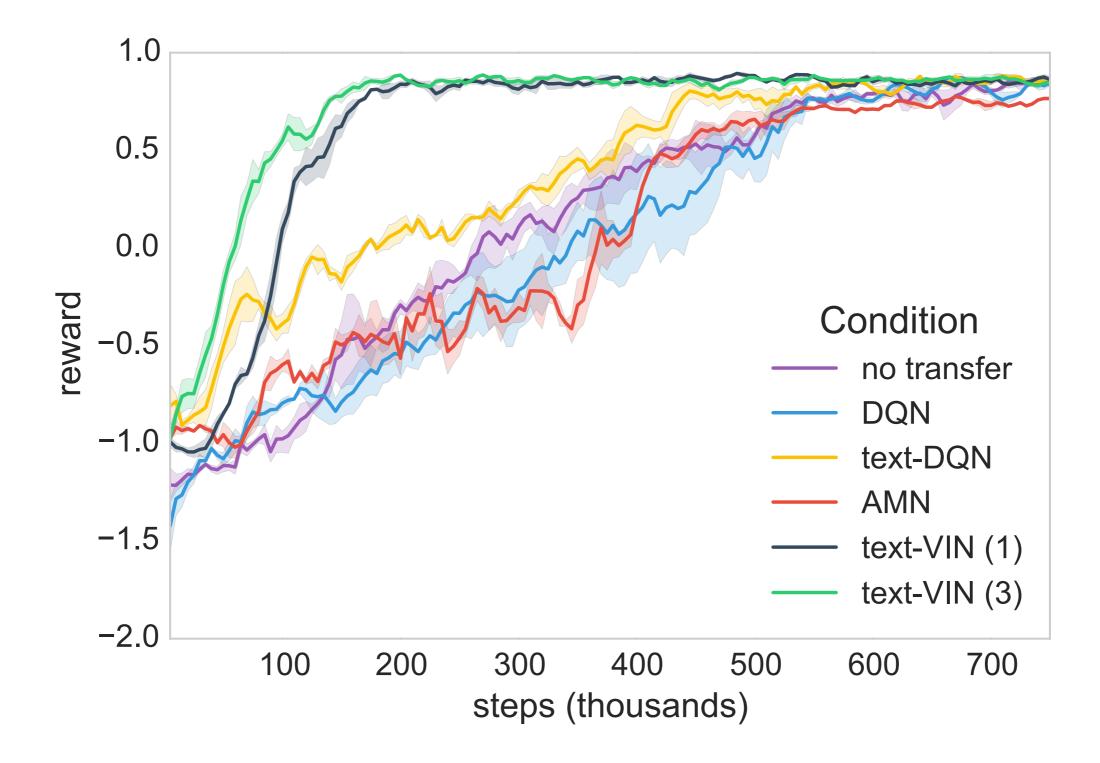
Average reward



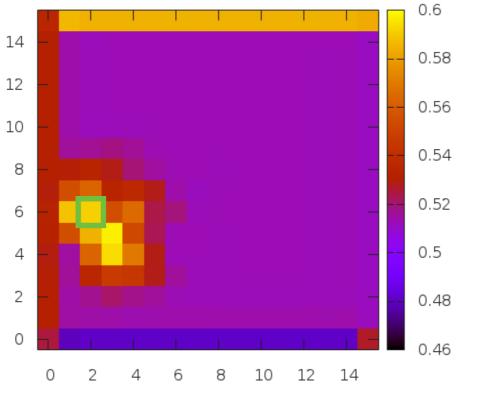
Average reward

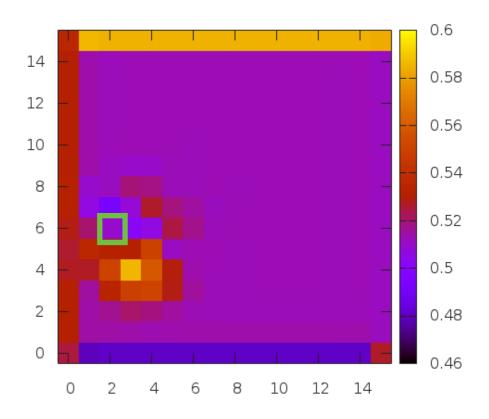


Transfer results (F&E-I to Freeway)

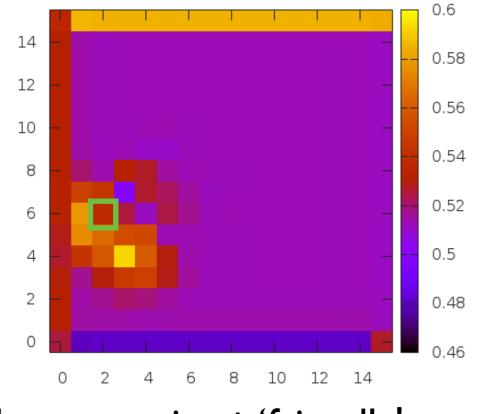


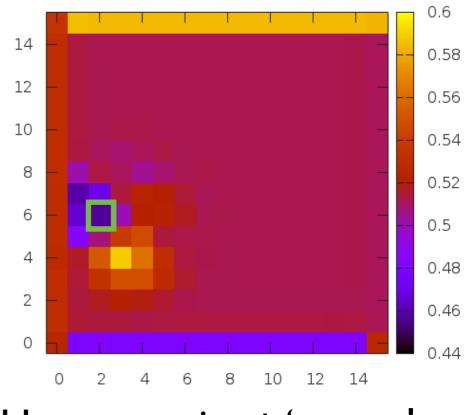
Agent: (3,4) Entity: (2,6)





Unseen entity





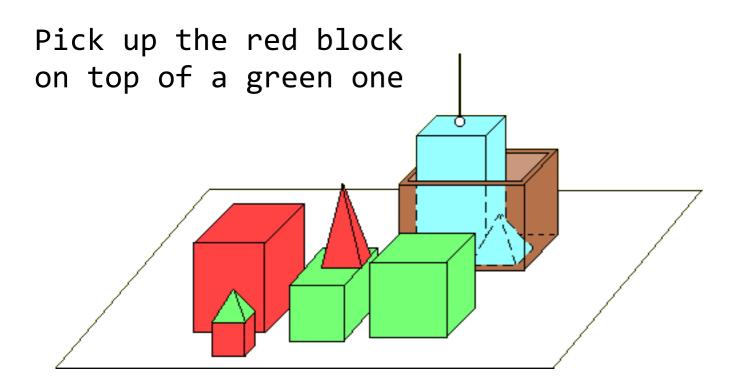
Unseen entity + 'friendly' text

Unseen entity + 'enemy' text

Representation Learning for Grounded Spatial Reasoning

Michael Janner, Karthik Narasimhan, Regina Barzilay MIT

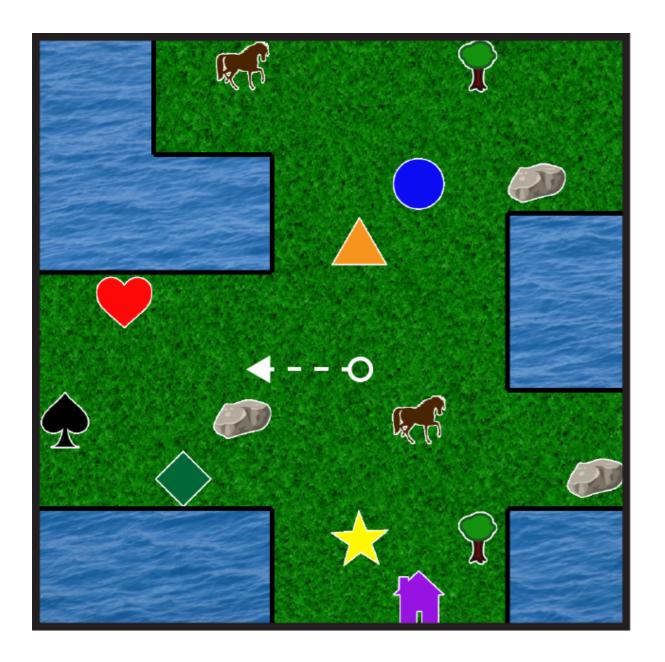
Understanding spatial references



Human robot interaction

Autonomous navigation

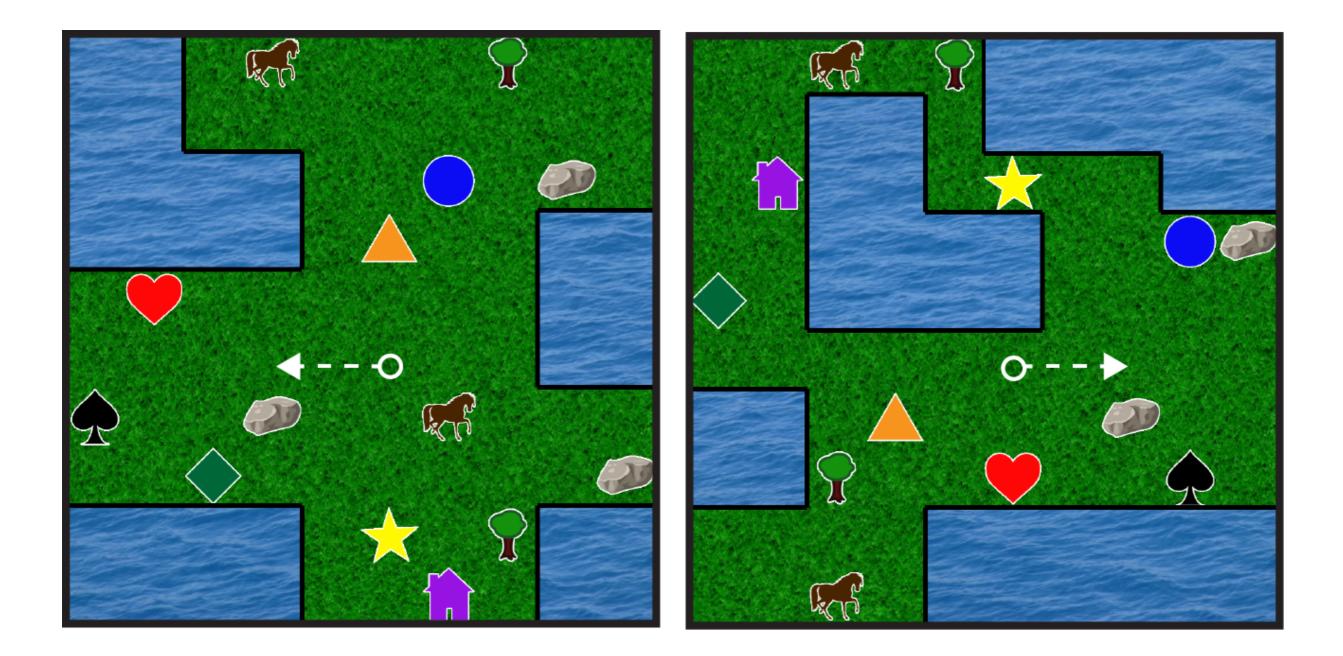
A spatial reasoning task



- Interactive navigation world
- Goal specified in natural language
- Rewards for reaching goals
- No domain knowledge

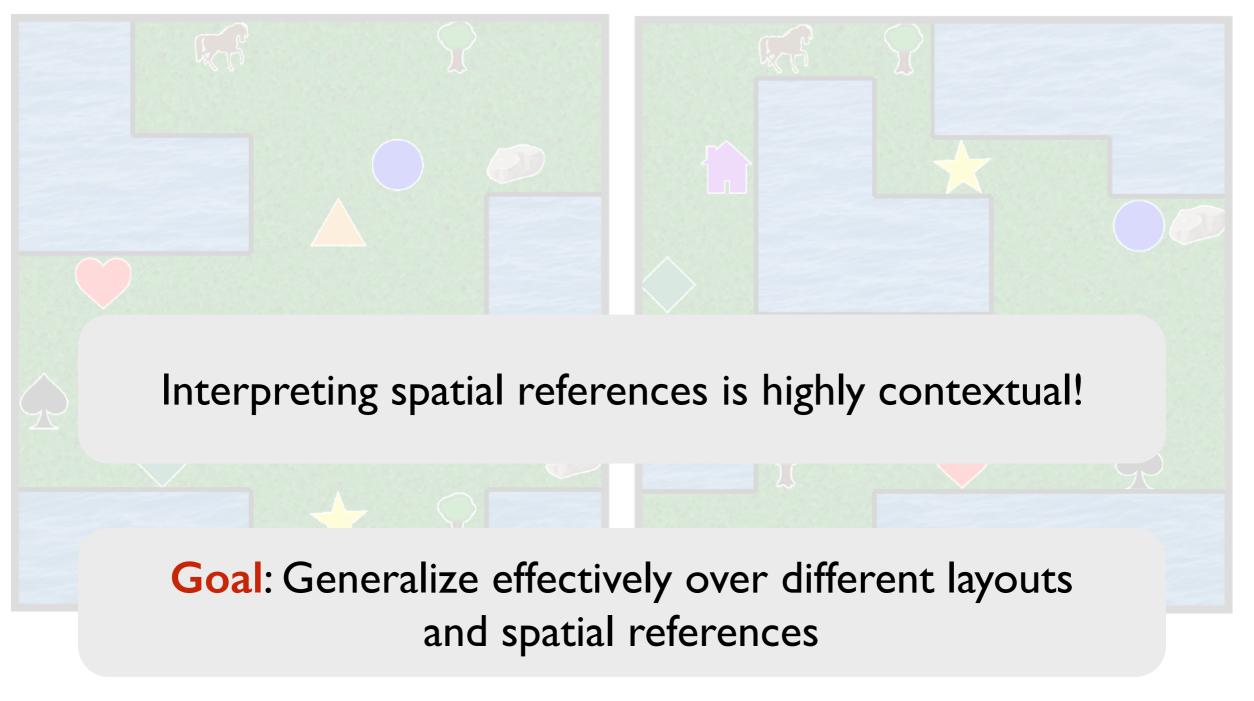
Reach the cell above the westernmost rock

A spatial reasoning task



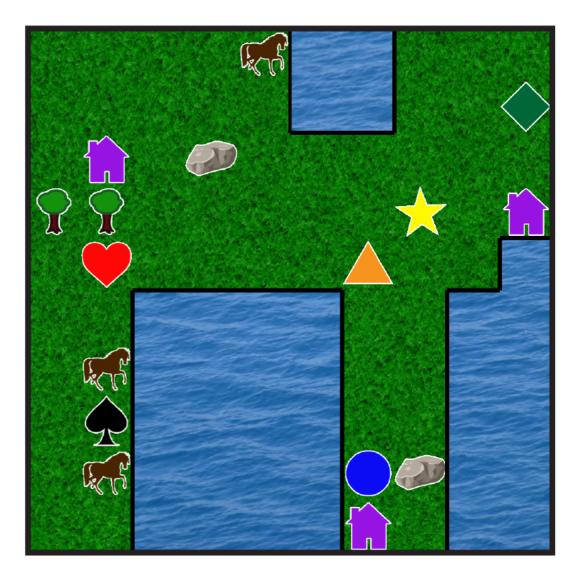
Reach the cell above the westernmost rock

A spatial reasoning task

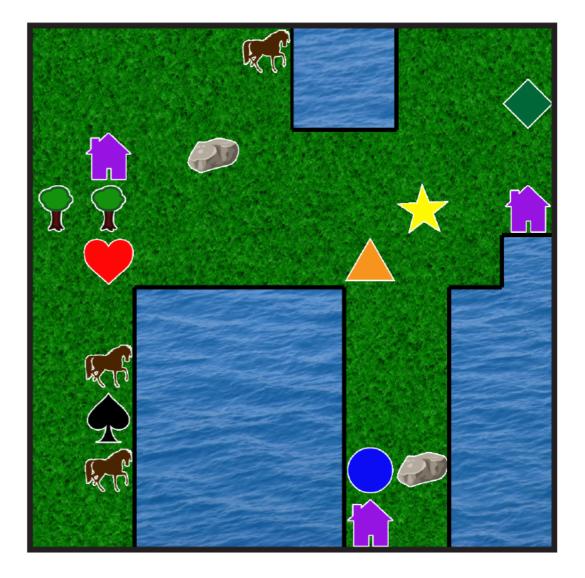


Reach the cell above the westernmost rock

I. Refer to specific entity "Go to the circle"

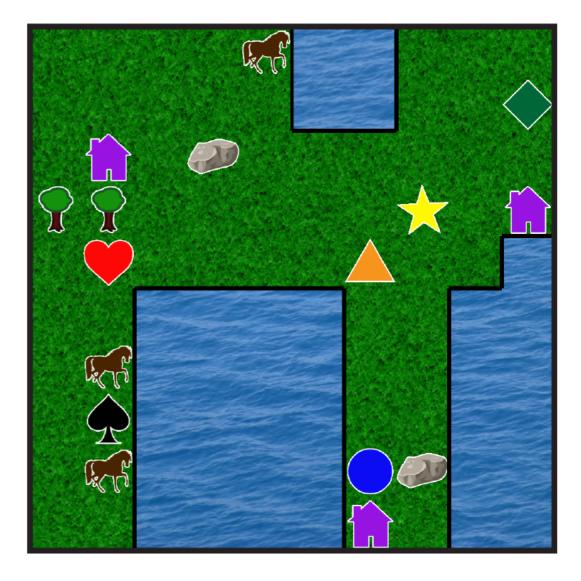


- I. Refer to specific entity
- 2. Location using a single referent entity
- "Reach the cell above the circle"



- I. Refer to specific entity
- 2. Location using a single referent entity
- 3.Location using multiple referent entities

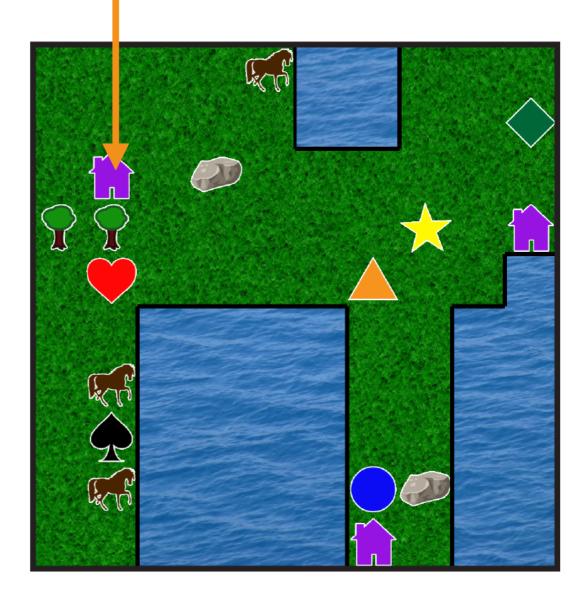
"Move to the goal one square to the right of triangle and two squares to the bottom of star"



I.Refer to specific entity

- 2.Location using a single referent entity
- 3.Location using multiple referent entities

- I. (Local) Go two spaces above the heart.
- 2. (Global) Reach the northernmost house.



Challenges

- Interpretation of spatial references is highly contextdependent.
- Rich, flexible ways of verbalizing spatial references
- Only source of supervision is reward-based feedback

Markov Decision Process

$\langle S, A, X, T, R \rangle$

- S : State configurations
- A : Actions
- X : Goal specifications in language
- T : Transition distribution
- R : Reward function

Value Iteration

$$Q(s, a, x) = R(s, x) + \gamma \sum_{s' \in S} T(s'|s, a, x) V(s', x)$$

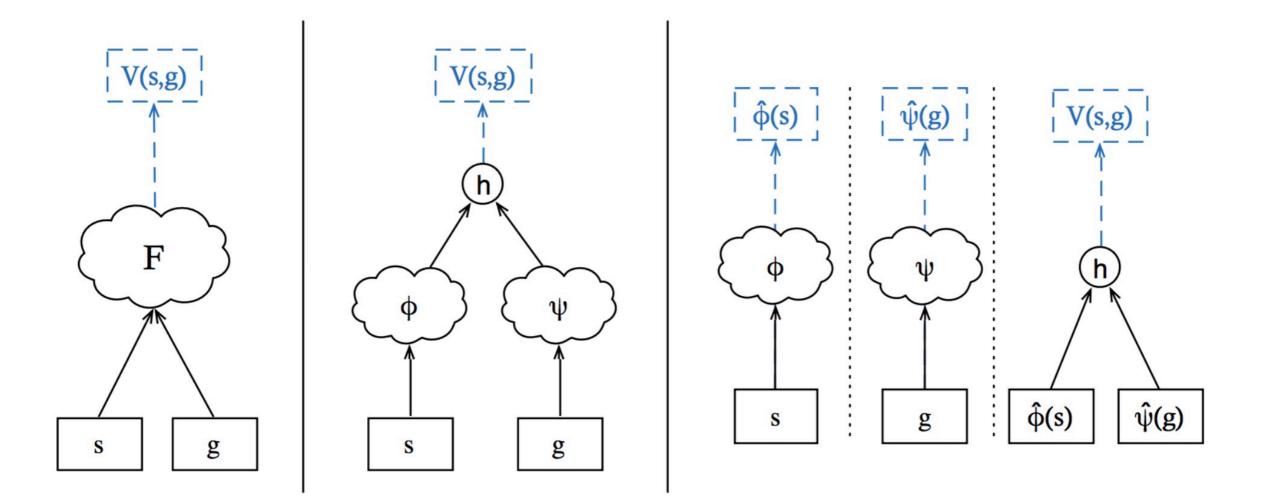
$$V(s, x) = \max_{a} Q(s, a, x)$$

Goal-conditioned action policy: $\pi(s, x) = \arg \max_{a} Q(s, a, x)$

Model requirements

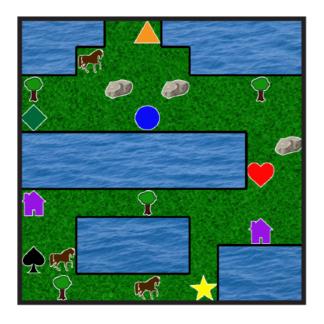
- Joint representation of observations (s) and instructions (x)
- Flexible representation of goals, encoding both local structure and global spatial attributes.
- Must be compositional, to generalize over linguistic variety in instructions.

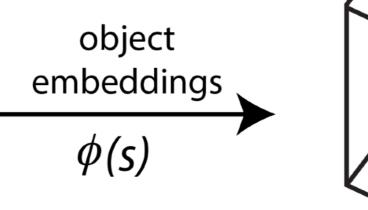
Universal Value Function Approximators

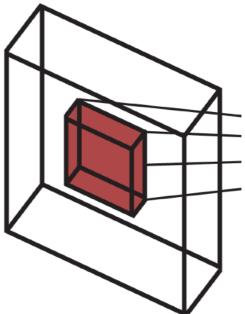


(Schaul et al., 2015)

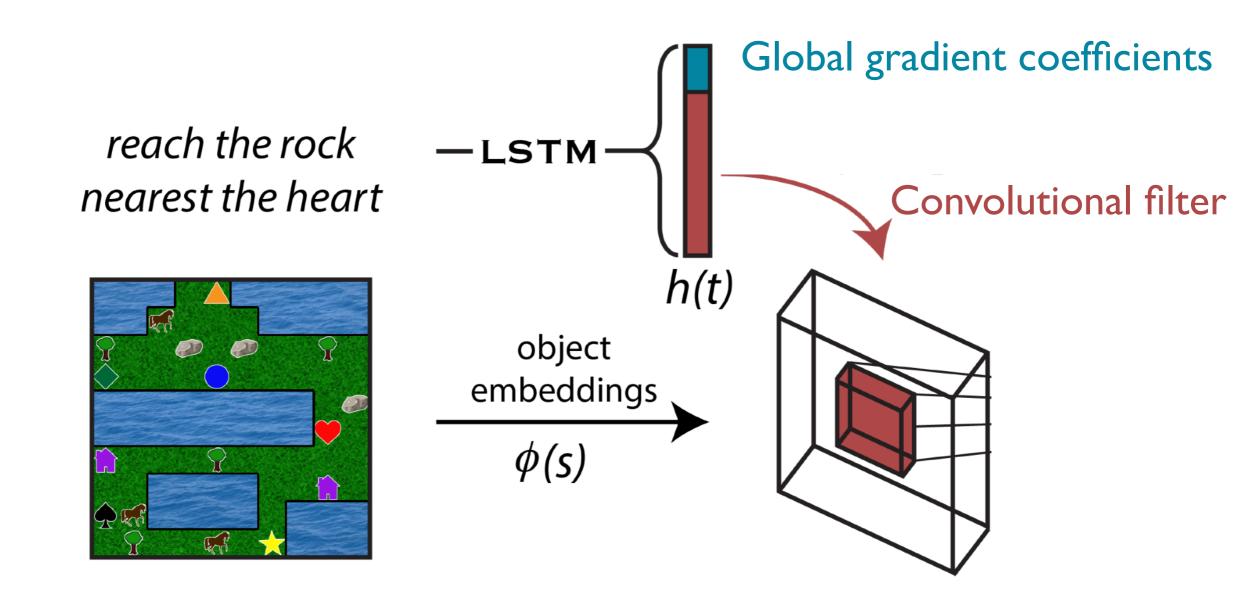
Our Model



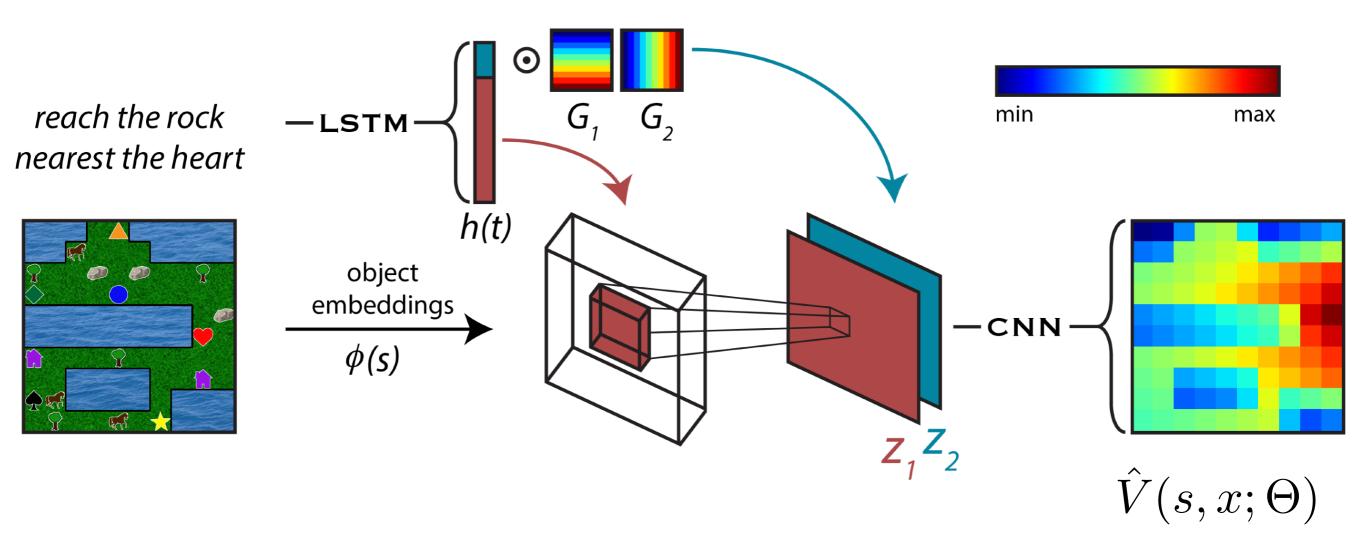




Our Model



Our Model

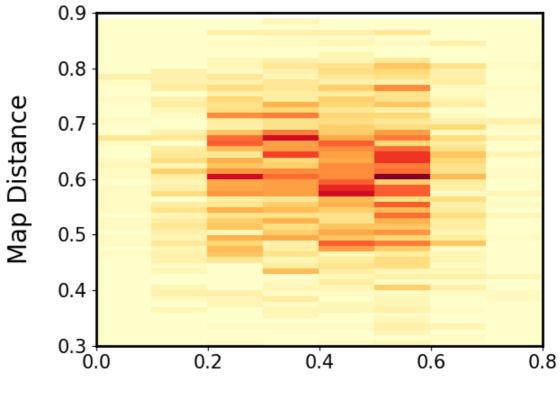


$$\mathcal{L}(\Theta) = \mathcal{E}_{s \sim \mathcal{D}} \left[\hat{V}(s, x; \Theta) - \left(R(s, x) + \gamma \max_{a} \sum_{s'} T(s'|s, a) \hat{V}(s', x; \Theta^{-}) \right) \right]^2$$

Experimental setup

- Puddle world with randomized layout and randomly placed unique
 (6) and non-unique
 (4) objects
- Text instructions for randomized goals collected from Amazon Mechanical Turk (max length 43)

Split	Local	Global
Train	1566	1071
Test	399	272

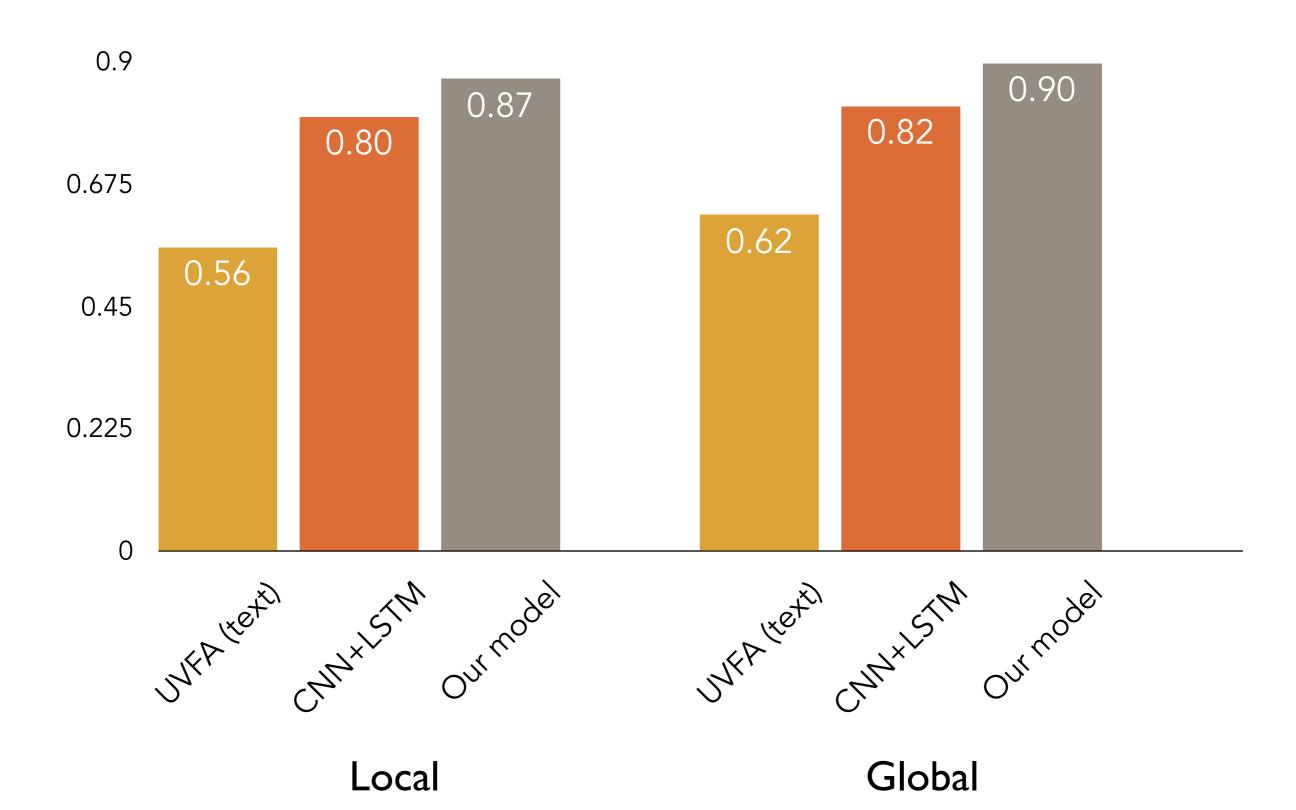


Instruction Edit Distance

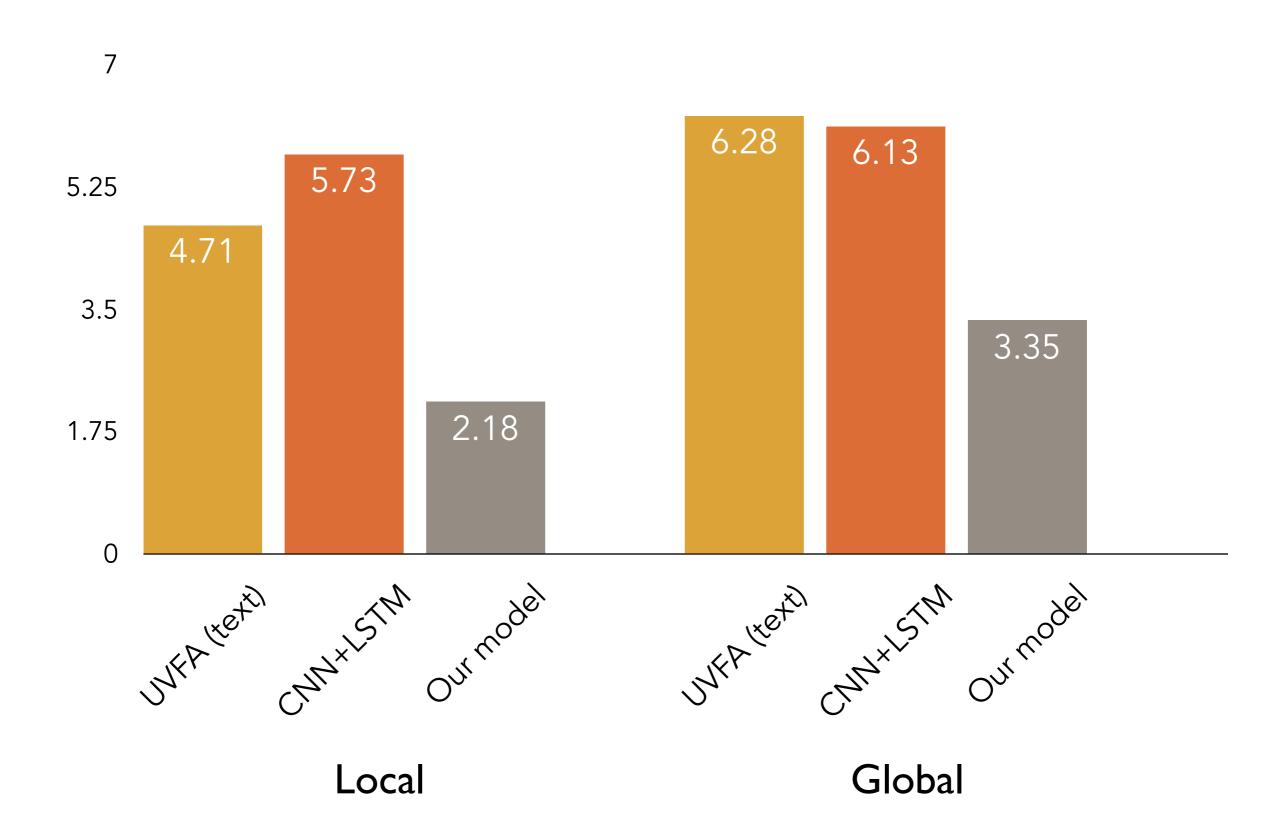
Baselines

- UVFA (text): UVFA model (Schaul et al., 2015) adapted to use text for goal specifications
- CNN+LSTM: Separately process image and text and then feed concatenated representations to MLP (Misra et al., 2017)

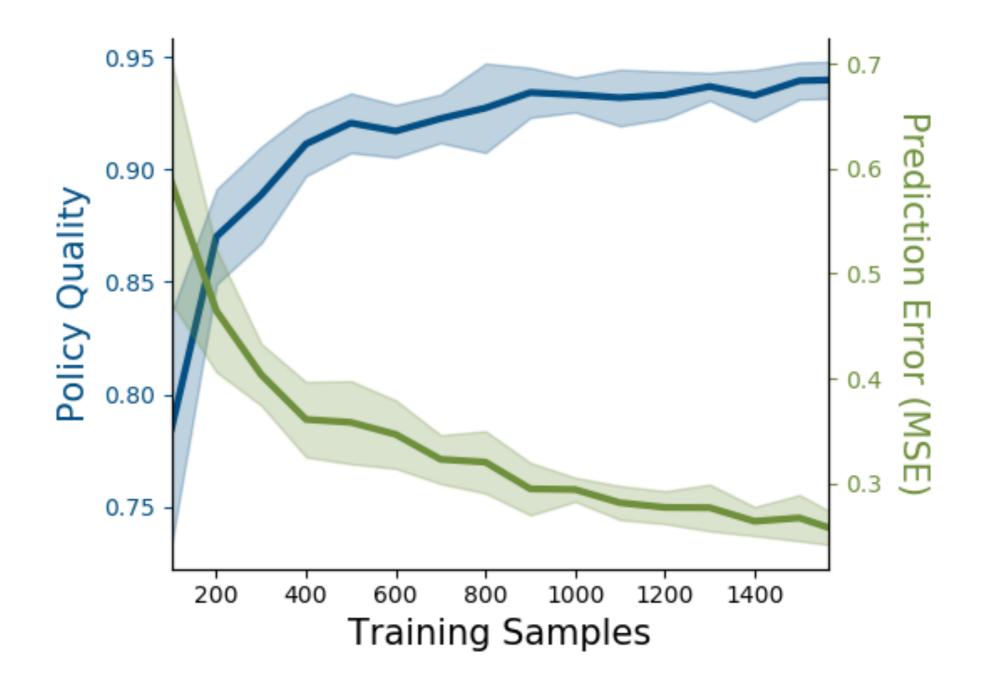
Results: Policy Quality



Results: Distance to goal

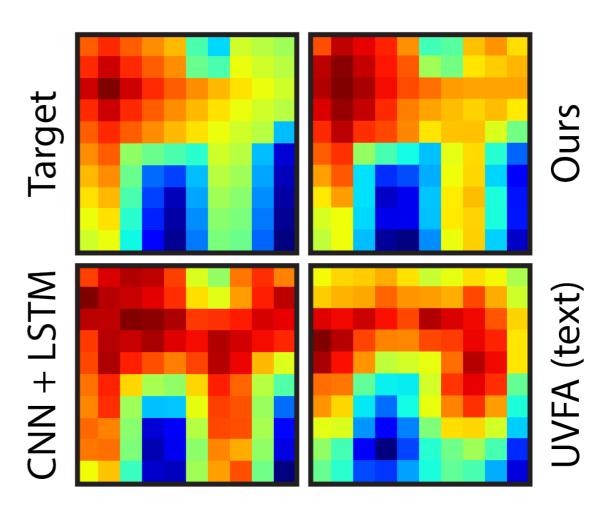


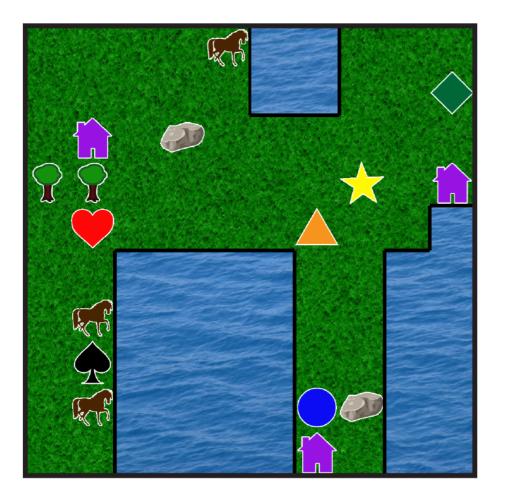
Sample efficiency

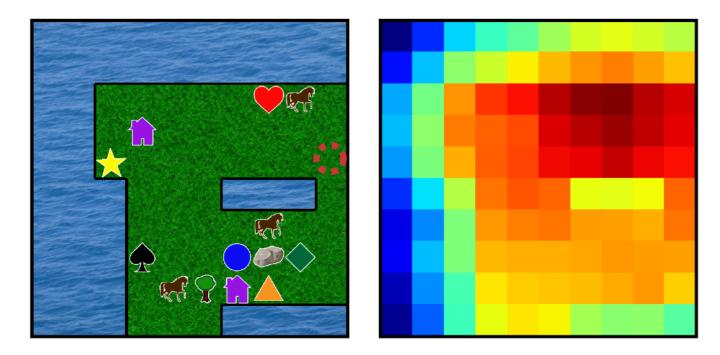


Value maps

Reach the northernmost house.

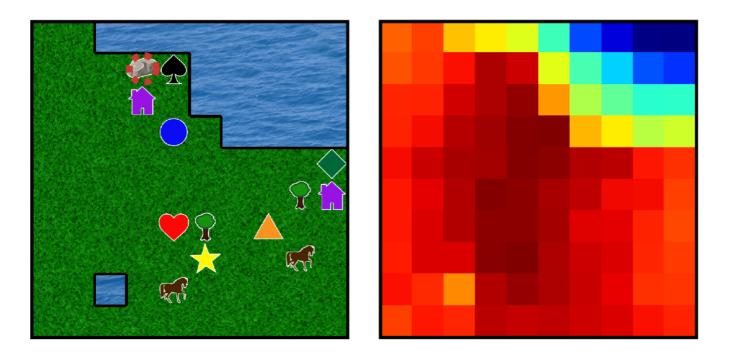






Multiple levels of indirection

reach cell one to the right and two down from horse located to the right of the heart



Redundant information

locate the cell that is filled w/a rock to the left of the teal spade and above the purple house which is above and to the left of the blue circle

Conclusions

- Language provides a compact medium for encoding knowledge for policy transfer
- Model-aware methods more suitable for leveraging language for transfer.
- Spatial reasoning is highly contextual and a challenging grounding task.
- Joint reasoning over text and environment is crucial for effective generalization over unseen worlds and linguistic variety.

www.karthiknarasimhan.com