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The meaning of an utterance is given by its truth conditions

the distribution over states in which it is uttered

or equivalently, the belief it induces in listeners

This distribution is well-defined even if the “utterance” is a 
vector rather than a sequence of tokens.
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translation), we focus on developing automatic
measures of system performance. We use the avail-
able training data to develop simulated models of
human decisions; by first showing that these mod-
els track well with human judgments, we can be
confident that their use in evaluations will corre-
late with human understanding. We employ the
following two metrics:

Belief evaluation This evaluation focuses on the
denotational perspective in semantics that moti-
vated the initial development of our model. We
have successfully understood the semantics of a
message z

r

if, after translating z

r

7! z

h

, a human
listener can form a correct belief about the state
in which z

r

was produced. We construct a simple
state-guessing game where the listener is presented
with a translated message and two state observa-
tions, and must guess which state the speaker was
in when the message was emitted.

When translating from natural language to neu-
ralese, we use the learned agent model to directly
guess the hidden state. For neuralese to natural
language we must first construct a “model human
listener” to map from strings back to state repre-
sentations; we do this by using the training data to
fit a simple regression model that scores (state, sen-
tence) pairs using a bag-of-words sentence repre-
sentation. We find that our “model human” matches
the judgments of real humans 83% of the time on
the colors task, 77% of the time on the birds task,
and 77% of the time on the driving task. This gives
us confidence that the model human gives a reason-
ably accurate proxy for human interpretation.

Behavior evaluation This evaluation focuses on
the cooperative aspects of interpretability: we mea-
sure the extent to which learned models are able
to interoperate with each other by way of a transla-
tion layer. In the case of reference games, the goal
of this semantic evaluation is identical to the goal
of the game itself (to identify the hidden state of
the speaker), so we perform this additional prag-
matic evaluation only for the driving game. We
found that the most data-efficient and reliable way
to make use of human game traces was to construct
a “deaf” model human. The evaluation selects a
full game trace from a human player, and replays
both the human’s actions and messages exactly (dis-
regarding any incoming messages); the evaluation
measures the quality of the natural-language-to-
neuralese translator, and the extent to which the

(a)

as speaker
R H

as
lis

te
ne

r R 1.00
0.50 random
0.70 direct
0.73 belief (ours)

H*
0.50

0.830.72
0.86

(b)

as speaker
R H

as
lis

te
ne

r R 0.95
0.50 random
0.55 direct
0.60 belief (ours)

H*
0.50

0.770.57
0.75

Table 1: Evaluation results for reference games. (a) The colors
task. (b) The birds task. Whether the model human is in a
listener or speaker role, translation based on belief matching
outperforms both random and machine translation baselines.

learned agent model can accommodate a (real) hu-
man given translations of the human’s messages.

Baselines We compare our approach to two base-
lines: a random baseline that chooses a translation
of each input uniformly from messages observed
during training, and a direct baseline that directly
maximizes p(z

0|z) (by analogy to a conventional
machine translation system). This is accomplished
by sampling from a DCP speaker in training states
labeled with natural language strings.

8 Results

In all below, “R” indicates a DCP agent, “H” in-
dicates a real human, and “H*” indicates a model
human player.

Reference games Results for the two reference
games are shown in Table 1. The end-to-end trained
model achieves nearly perfect accuracy in both
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Figure 7: Best-scoring translations generated for color task.
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a “deaf” model human. The evaluation selects a
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alization and ablation techniques used in previous
work on understanding complex models (Strobelt
et al., 2016; Ribeiro et al., 2016).

While structurally quite similar to the task of
machine translation between pairs of human lan-
guages, interpretation of neuralese poses a number
of novel challenges. First, there is no natural source
of parallel data: there are no bilingual “speakers”
of both neuralese and natural language. Second,
there may not be a direct correspondence between
the strategy employed by humans and CDP agents:
even if it were constrained to communicate using
natural language, an automated agent might choose
to produce a different message from humans in a
given state. We tackle both of these challenges by
appealing to the grounding of messages in game-
play. Our approach is based on one of the core
insights in natural language semantics: messages
(whether in neuralese or natural language) have
similar meanings when they induce similar beliefs
about the state of the world. We explore several
related questions:

• What makes a good translation, and under
what conditions is translation possible at all
(Section 4)?

• How can we build a model to translate
between neuralese and natural language
(Section 5)?

• How does this model trade off the compet-
ing demands of translatability and accuracy in
learned policies (Section 6)?

We conclude by applying our approach to agents
trained on a number of different tasks, finding that
it outperforms a more conventional machine trans-
lation criterion both when attempting to interoper-
ate with a neuralese speaker and when predicting
its hidden state.

2 Related work

A variety of approaches for learning deep policies
with communication were proposed essentially si-
multaneously in the past year. We have broadly
labeled these as “communicating deep policies”;
concrete examples include Lazaridou et al. (2016b),
Foerster et al. (2016), and Sukhbaatar et al. (2016).
The policy representation we employ in this paper
is similar to the latter two of these, although the
general framework is agnostic to low-level model-
ing details and could be straightforwardly applied

to other architectures. Analysis of communication
strategies in all these papers has been largely ad-
hoc, obtained by clustering states from which simi-
lar messages are emitted and attempting to manu-
ally assign semantics to these clusters. The present
work aims at developing tools for performing this
analysis automatically.

Most closely related to our approach is that of
Lazaridou et al. (2016a), who also develop a model
for assigning natural language interpretations to
learned messages; however, this approach relies
on a combination of supervised cluster labels and
is targeted specifically towards referring expres-
sion games. Here we attempt to develop an ap-
proach that can handle general multiagent interac-
tions without assuming a prior discrete structure in
space of observations.

The literature on learning decentralized multi-
agent policies in general is considerably larger
(Bernstein et al., 2002; Dibangoye et al., 2016).
This includes work focused on communication in
multiagent settings (Roth et al., 2005) and even
communication using natural language messages
(Vogel et al., 2013b). All of these approaches em-
ploy structured communication schemes with man-
ually engineered messaging protocols; these are, in
some sense, automatically interpretable, but at the
cost of introducing considerable complexity into
both training and inference.

Our evaluation in this paper investigates com-
munication strategies that arise in a number of dif-
ferent games, including reference games and an
extended-horizon driving game. Communication
strategies for reference games were previosly ex-
plored by Vogel et al. (2013a), Andreas and Klein
(2016) and Kazemzadeh et al. (2014), and refer-

large bird,   black wings,   black crown

small brown,   light brown,   dark brown

Figure 2: Preview of our approach—best-scoring translations
generated for a reference game involving images of birds.
The speaking agent’s goal is to send a message that uniquely
identifies the bird on the left. From these translations it can be
seen that the learned model appears to discriminate based on
coarse attributes like size and color.
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Table 1: Evaluation results for reference games. (a) The colors
task. (b) The birds task. Whether the model human is in a
listener or speaker role, translation based on belief matching
outperforms both random and machine translation baselines.

R / R H / H R / H

1.93 / 0.71 — / 0.77
1.35 / 0.64
1.49 / 0.67

1.54 / 0.67

Table 2: Behavior evaluation results for the driving game.
Scores are presented in the form “reward / completion rate”.
While less accurate than either humans or CDPs with a shared
language, the models that employ a translation layer obtain
higher reward and a greater overall success rate than baselines.

Reference games Results for the two reference
games are shown in Table 1. The end-to-end trained
model achieves nearly perfect accuracy in both
cases, while a model trained to communicate in
natural language achieves somewhat lower perfor-
mance. Regardless of whether the speaker is a CDP
and the listener a model human or vice-versa, trans-
lation based on the belief-matching criterion in Sec-
tion 5 achieves the best performance; indeed, when
translating from neuralese to natural language, the
listener is able to achieve a higher score than it is
natively. This suggests that the automated agent
has discovered a more effective strategy than the
one demonstrated by humans in the dataset, and
that the effectiveness of this strategy is preserved
by translation. Example translations from the refer-
ence games are depicted in Figure 2 and Figure 7.

magenta,   hot,   rose,   violet,   purple

magenta,   hot,   violet,   rose,   purple

olive,   puke,   pea,   grey,   brown

pinkish,   grey,   dull,   pale,   light

Figure 7: Best-scoring translations generated for color task.
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Table 3: Belief evaluation results for the driving game. Driving
states are challenging to identify based on messages alone (as
evidenced by the comparatively low scores obtained by single-
language pairs) . Translation based on belief achieves the best
overall performance in both directions.

Driving game Behavior evaluation of the driving
game is shown in Table 2, and belief evaluation is
shown in Table 3. Translation of messages in the
driving game is considerably more challenging than
in the reference games, and scores are uniformly
lower; however, a clear benefit from the belief-
matching model is still visible. Belief matching
leads to higher scores on the belief evaluation in
both directions, and allows agents to obtain a higher
reward on average (though task completion rates
remain roughly the same across all agents).

Some example translations of driving game mes-
sages are shown in Figure 8.

9 Conclusion

We have investigated the problem of interpreting
message vectors from communicating deep policies
by translating them. After introducing a translation
criterion based on matching listener beliefs about
speaker states, we presented both theoretical and
empirical evidence that this criterion outperforms
a more conventional machine translation approach
at both recovering the content of message vectors
and facilitating collaboration between neuralese
and natural language speakers.
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Reference games Results for the two reference
games are shown in Table 1. The end-to-end trained
model achieves nearly perfect accuracy in both
cases, while a model trained to communicate in
natural language achieves somewhat lower perfor-
mance. Regardless of whether the speaker is a CDP
and the listener a model human or vice-versa, trans-
lation based on the belief-matching criterion in Sec-
tion 5 achieves the best performance; indeed, when
translating from neuralese to natural language, the
listener is able to achieve a higher score than it is
natively. This suggests that the automated agent
has discovered a more effective strategy than the
one demonstrated by humans in the dataset, and
that the effectiveness of this strategy is preserved
by translation. Example translations from the refer-
ence games are depicted in Figure 2 and Figure 7.

magenta,   hot,   rose,   violet,   purple

magenta,   hot,   violet,   rose,   purple

olive,   puke,   pea,   grey,   brown

pinkish,   grey,   dull,   pale,   light

Figure 7: Best-scoring translations generated for color task.

as speaker
R H

as
lis

te
ne

r R 0.85
0.50 random
0.45 direct
0.61 belief (ours)

H*
0.5

0.770.45
0.57

Table 3: Belief evaluation results for the driving game. Driving
states are challenging to identify based on messages alone (as
evidenced by the comparatively low scores obtained by single-
language pairs) . Translation based on belief achieves the best
overall performance in both directions.

Driving game Behavior evaluation of the driving
game is shown in Table 2, and belief evaluation is
shown in Table 3. Translation of messages in the
driving game is considerably more challenging than
in the reference games, and scores are uniformly
lower; however, a clear benefit from the belief-
matching model is still visible. Belief matching
leads to higher scores on the belief evaluation in
both directions, and allows agents to obtain a higher
reward on average (though task completion rates
remain roughly the same across all agents).

Some example translations of driving game mes-
sages are shown in Figure 8.

9 Conclusion

We have investigated the problem of interpreting
message vectors from communicating deep policies
by translating them. After introducing a translation
criterion based on matching listener beliefs about
speaker states, we presented both theoretical and
empirical evidence that this criterion outperforms
a more conventional machine translation approach
at both recovering the content of message vectors
and facilitating collaboration between neuralese
and natural language speakers.

at goal,   done,   left to top

going in intersection,   proceed,   going

you first,   following,   going down

Figure 8: Best-scoring translations generated for driving task.

(a)
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R H
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r R 1.00
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0.70 direct
0.73 belief (ours)

H*
0.50

0.830.72
0.86

(b)

as speaker
R H

as
lis

te
ne

r R 0.95
0.50 random
0.55 direct
0.60 belief (ours)

H*
0.5

0.710.57
0.75

Table 1: Evaluation results for reference games. (a) The colors
task. (b) The birds task. Whether the model human is in a
listener or speaker role, translation based on belief matching
outperforms both random and machine translation baselines.

R / R H / H R / H

1.93 / 0.71 — / 0.77
1.35 / 0.64
1.49 / 0.67

1.54 / 0.67

Table 2: Behavior evaluation results for the driving game.
Scores are presented in the form “reward / completion rate”.
While less accurate than either humans or CDPs with a shared
language, the models that employ a translation layer obtain
higher reward and a greater overall success rate than baselines.

Reference games Results for the two reference
games are shown in Table 1. The end-to-end trained
model achieves nearly perfect accuracy in both
cases, while a model trained to communicate in
natural language achieves somewhat lower perfor-
mance. Regardless of whether the speaker is a CDP
and the listener a model human or vice-versa, trans-
lation based on the belief-matching criterion in Sec-
tion 5 achieves the best performance; indeed, when
translating from neuralese to natural language, the
listener is able to achieve a higher score than it is
natively. This suggests that the automated agent
has discovered a more effective strategy than the
one demonstrated by humans in the dataset, and
that the effectiveness of this strategy is preserved
by translation. Example translations from the refer-
ence games are depicted in Figure 2 and Figure 7.

magenta,   hot,   rose,   violet,   purple

magenta,   hot,   violet,   rose,   purple

olive,   puke,   pea,   grey,   brown

pinkish,   grey,   dull,   pale,   light

Figure 7: Best-scoring translations generated for color task.

as speaker
R H

as
lis

te
ne

r R 0.85
0.50 random
0.45 direct
0.61 belief (ours)

H*
0.5

0.770.45
0.57

Table 3: Belief evaluation results for the driving game. Driving
states are challenging to identify based on messages alone (as
evidenced by the comparatively low scores obtained by single-
language pairs) . Translation based on belief achieves the best
overall performance in both directions.

Driving game Behavior evaluation of the driving
game is shown in Table 2, and belief evaluation is
shown in Table 3. Translation of messages in the
driving game is considerably more challenging than
in the reference games, and scores are uniformly
lower; however, a clear benefit from the belief-
matching model is still visible. Belief matching
leads to higher scores on the belief evaluation in
both directions, and allows agents to obtain a higher
reward on average (though task completion rates
remain roughly the same across all agents).

Some example translations of driving game mes-
sages are shown in Figure 8.

9 Conclusion

We have investigated the problem of interpreting
message vectors from communicating deep policies
by translating them. After introducing a translation
criterion based on matching listener beliefs about
speaker states, we presented both theoretical and
empirical evidence that this criterion outperforms
a more conventional machine translation approach
at both recovering the content of message vectors
and facilitating collaboration between neuralese
and natural language speakers.

at goal,   done,   left to top

going in intersection,   proceed,   going

you first,   following,   going down

Figure 8: Best-scoring translations generated for driving task.

at goal 
done

going in intersection 
proceed 
going

you first 
following
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Evaluation: scene agreement for negation
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