Structure and Interpretation of Neural Codes

Jacob Andreas

Translating Neuralese

Jacob Andreas, Anca Drăgan and Dan Klein

[Wagner et al. 03, Sukhbaatar et al. 16, Foerster et al. 16]

Learning to Communicate

Learning to Communicate

4

Neuralese

1.02.3-0.30.4-1.21.1 X

Translating neuralese

Interoperate with autonomous systems

• **Diagnose** errors

• Learn from solutions

[Lazaridou et al. 16]

Translating neuralese

Natural language & neuralese **Statistical** machine translation **Semantic** machine translation Implementation details Evaluation

Natural language & neuralese Statistical machine translation

Semantic machine translation

Implementation details Evaluation

Natural language & neuralese **Statistical** machine translation **Semantic** machine translation Implementation details Evaluation

Natural language & neuralese Statistical machine translation Semantic machine translation

Implementation details

Evaluation

Natural language & neuralese Statistical machine translation **Semantic** machine translation Implementation details

Evaluation

Natural language & neuralese **Statistical** machine translation

Semantic machine translation

Implementation details

Evaluation

[e.g. Koehn 10]

A statistical MT problem

all clear

How do we induce a translation model?

A statistical MT problem

$\max p([o] | a]) p([a])$ а $\propto \max \sum p([o]) + p([a]) + p([a]) + p([a])$

A statistical MT problem

Σp(, I not sure) p(not sure)

Stat MT criterion doesn't capture meaning

Natural language & neuralese **X** Statistical machine translation

Semantic machine translation

Implementation details Evaluation

The meaning of an utterance is given by its truth conditions

[Davidson 67]

The meaning of an utterance is given by its truth conditions

[Davidson 67]

The meaning of an utterance is given by its truth conditions

(loc (goal blue) north)

The meaning of an utterance is given by its truth conditions the distribution over states in which it is uttered

[Beltagy et al. 14]

0.2

0.001

The meaning of an utterance is given by its truth conditions

the distribution over states in which it is uttered

the **belief** it induces in listeners

0.4

A "semantic MT" problem

0.2

The meaning of an utterance is given by

- the distribution over states in which it is uttered
 - or equivalently, the **belief** it induces in listeners

The meaning of an utterance is given by

vector rather than a sequence of tokens.

- the distribution over states in which it is uttered
 - or equivalently, the **belief** it induces in listeners

This distribution is well-defined even if the "utterance" is a

In the intersection

Interlingua!

argmin $KL(\beta(0)) || \beta(a))$

argmin $KL(\beta(0) || \beta(a))$

Computing representations

argmin \mathbb{A} KL($\beta(\mathbb{O}) \parallel \beta(\mathbb{A})$)

Computing representations: sparsity

argmin $KL(\beta(0) || \beta(a))$

agent policy

44

agent model

argmin $\mathcal{KL}(\beta(0) | \beta(a))$

Computing representations: smoothing

argmin $KL(\beta(0) || \beta(a))$

human

argmin $KL(\beta(0) || \beta(a))$

human policy

human model

argmin \mathbb{A} KL($\beta(\mathbb{O}) \parallel \beta(\mathbb{O})$)

argmin \mathbb{A} KL($\beta(\mathbb{P}) \parallel \beta(\mathbb{P})$)

Computing KL

argmin $KL(\beta(0) | \beta(a))$

Computing KL

$\operatorname{argmin}_{a} \operatorname{KL}(\beta(0) | \beta(a))$

Computing KL: sampling

argmin $KL(\beta(0) || \beta(a))$

Finding translations

Finding translations: brute force

argmin $KL(\beta(0) || \beta(a))$

after you

Finding translations: brute force

argmin $KL(\beta(0) || \beta(a))$

going north —

l'm done

atter you

Finding translations

Natural language & neuralese Statistical machine translation **Semantic** machine translation Implementation details

Evaluation

Outline

Referring expression games

Evaluation: translator-in-the-loop

Evaluation: translator-in-the-loop

English → English*

magenta, hot, violet

magenta, hot, violet

olive, puke, pea

Ø magenta, hot, rose

magenta, hot, violet

olive, puke, pea

pinkish, grey, dull

Experiment: image references

small brown, light brown, dark brown

large bird, black wings, black crown

Statistical MT

Semantic MT

Experiment: driving game

Neuralese \rightarrow Neuralese

Neuralese ↔ English*

How to translate

at goal done left to top

you first following going down

going in intersection proceed going

Classical notions of "meaning" apply even to un-language-like things (e.g. RNN states)

• These meanings can be compactly represented without logical forms if we have access to world states

Communicating policies "say" interpretable things!

Classical notions of "meaning" apply even to non-language-like things (e.g. RNN states)

These meanings can be compactly represented

without logical forms if we have access to world states

Communicating policies "say" interpretable things!

 Classical notions of "meaning" apply even to non-language-like things (e.g. RNN states)

 These meanings can be compactly represented without logical forms if we have access to world states

Communicating policies "say" interpretable things!

$\operatorname{argmin}_{a} \operatorname{KL}(\beta(\mathfrak{G}) | \beta(\mathfrak{G}))$

Limitations

 $KL(p \parallel q) = \sum_{i} p(\sum_{i}) \log \frac{p(\sum_{i})}{q(\sum_{i})}$

but what about compositionality?

Analogs of linguistic structure in deep representations

Jacob Andreas and Dan Klein

at goal done

"Flat" semantics

you first following

going in intersection proceed going

[FitzGerald et al. 2013]

everything but the blue shapes orange square and non-squares

[FitzGerald et al. 2013]

lambda x: not(blue(x)) lambda x: or(orange(x), not(square(x))

1.0 -0.3

Translation criterion

$q(\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{\textcircled{o}}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{,}\ensuremath{e}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{e}\ensuremath{,}\ensuremath{,}\ensur$

Translation criterion

$q(\bigcirc, \bigcirc) = \mathbf{E}[\beta(\bigcirc) = \beta(\bigcirc)]$

"High-level" communicative behavior "Low-level" message structure

101

"High-level" communicative behavior "Low-level" message structure

103

everything but squares

everything but squares

everything but squares

Theories of model behavior: random

$$\begin{array}{cccc} -0.1 & 1.3 \\ 0.5 & -0.4 \\ 0.2 & 1.0 \end{array}$$

Theories of model behavior: literal

$$\begin{array}{cccc} -0.1 & 1.3 \\ 0.5 & -0.4 \\ 0.2 & 1.0 \end{array}$$

Evaluation: high-level scene agreement

Evaluation: high-level object agreement

"High-level" communicative behavior "Low-level" message structure

111

Collecting translation data

all the red shapes

blue objects

everything but red

green squares

not green squares

Collecting translation data

$$\lambda x.red(x)$$

$$\lambda x.blu(x)$$

$$\lambda x.\neg red(x)$$

Collecting translation data

$$\lambda x.red(x)$$

$$\lambda x.blu(x)$$

$$\lambda x.\neg red(x)$$

$$\begin{array}{c} \bullet & 0.1 & -0.3 & 0.5 & 1.3 \\ \bullet & -0.3 & 0.2 & 0.1 & 0.3 \\ \bullet & 1.4 & -0.3 & -0.5 & 0.3 \\ \bullet & 0.2 & -0.2 & 0.5 & -0.3 \\ \bullet & 0.3 & -1.3 & -1.5 & 0.3 \end{array}$$

Extracting related pairs

Extracting related pairs

argmin

Learning compositional operators

Evaluating learned operators

Evaluating learned operators

Evaluating learned operators

Evaluation: scene agreement for negation

0

0

Input

Predicted

True

all the toys that of are not red all items that are only the blue and not blue or green green objects

Visualizing negation

every thing that is red

Evaluation: scene agreement for disjunction

123

Visualizing disjunction

- We can translate between neuralese and natural lang. by grounding in distributions over world states
- Under the right conditions, neuralese exhibits interpretable pragmatics & compositional structure
- Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

- by grounding in distributions over world states
- Under the right conditions, neuralese exhibits

We can translate between neuralese and natural lang.

interpretable pragmatics & compositional structure

 Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

- We can translate between neuralese and natural lang. by grounding in distributions over world states
- Under the right conditions, neuralese exhibits interpretable pragmatics & compositional structure
- Not just communication games—language might be a good general-purpose tool for interpreting deep reprs.

Conclusions

Conclusions

http://github.com/jacobandreas/{neuralese,rnn-syn}

