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ABSTRACT

Sequence to sequence learning has recently emerged as a new paradigm in super-
vised learning. To date, most of its applications focused on only one task and not
much work explored this framework for multiple tasks. This paper examines three
multi-task learning (MTL) settings for sequence to sequence models: (a) the one-
to-many setting – where the encoder is shared between several tasks such as ma-
chine translation and syntactic parsing, (b) the many-to-one setting – useful when
only the decoder can be shared, as in the case of translation and image caption
generation, and (c) the many-to-many setting – where multiple encoders and de-
coders are shared, which is the case with unsupervised objectives and translation.
Our results show that training on a small amount of parsing and image caption
data can improve the translation quality between English and German by up to 1.5
BLEU points over strong single-task baselines on the WMT benchmarks. Further-
more, we have established a new state-of-the-art result in constituent parsing with
93.0 F1. Lastly, we reveal interesting properties of the two unsupervised learning
objectives, autoencoder and skip-thought, in the MTL context: autoencoder helps
less in terms of perplexities but more on BLEU scores compared to skip-thought.

1 INTRODUCTION

Multi-task learning (MTL) is an important machine learning paradigm that aims at improving
the generalization performance of a task using other related tasks. Such framework has been
widely studied by Thrun (1996); Caruana (1997); Evgeniou & Pontil (2004); Ando & Zhang (2005);
Argyriou et al. (2007); Kumar & III (2012), among many others. In the context of deep neural net-
works, MTL has been applied successfully to various problems ranging from language (Liu et al.,
2015), to vision (Donahue et al., 2014), and speech (Heigold et al., 2013; Huang et al., 2013).

Recently, sequence to sequence (seq2seq) learning, proposed by Kalchbrenner & Blunsom (2013),
Sutskever et al. (2014), and Cho et al. (2014), emerges as an effective paradigm for dealing with
variable-length inputs and outputs. seq2seq learning, at its core, uses recurrent neural networks
to map variable-length input sequences to variable-length output sequences. While relatively new,
the seq2seq approach has achieved state-of-the-art results in not only its original application – ma-
chine translation – (Luong et al., 2015b; Jean et al., 2015a; Luong et al., 2015a; Jean et al., 2015b;
Luong & Manning, 2015), but also image caption generation (Vinyals et al., 2015b), and con-
stituency parsing (Vinyals et al., 2015a).

Despite the popularity of multi-task learning and sequence to sequence learning, there has been little
work in combining MTL with seq2seq learning. To the best of our knowledge, there is only one
recent publication by Dong et al. (2015) which applies a seq2seq models for machine translation,
where the goal is to translate from one language to multiple languages. In this work, we propose
three MTL approaches that complement one another: (a) the one-to-many approach – for tasks that
can have an encoder in common, such as translation and parsing; this applies to the multi-target
translation setting in (Dong et al., 2015) as well, (b) the many-to-one approach – useful for multi-
source translation or tasks in which only the decoder can be easily shared, such as translation and
image captioning, and lastly, (c) the many-to-many approach – which share multiple encoders and
decoders through which we study the effect of unsupervised learning in translation. We show that
syntactic parsing and image caption generation improves the translation quality between English
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Figure 1: Sequence to sequence learning examples – (left) machine translation (Sutskever et al.,
2014) and (right) constituent parsing (Vinyals et al., 2015a).

and German by up to +1.5 BLEU points over strong single-task baselines on the WMT benchmarks.
Furthermore, we have established a new state-of-the-art result in constituent parsing with 93.0 F1.
We also explore two unsupervised learning objectives, sequence autoencoders (Dai & Le, 2015) and
skip-thought vectors (Kiros et al., 2015), and reveal their interesting properties in the MTL setting:
autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.

2 SEQUENCE TO SEQUENCE LEARNING

Sequence to sequence learning (seq2seq) aims to directly model the conditional probability p(y|x) of
mapping an input sequence, x1, . . . , xn, into an output sequence, y1, . . . , ym. It accomplishes such
goal through the encoder-decoder framework proposed by Sutskever et al. (2014) and Cho et al.
(2014). As illustrated in Figure 1, the encoder computes a representation s for each input sequence.
Based on that input representation, the decoder generates an output sequence, one unit at a time, and
hence, decomposes the conditional probability as:

log p(y|x) =
∑m

j=1

log p (yj|y<j , x, s) (1)

A natural model for sequential data is the recurrent neural network (RNN), which is used by most of
the recent seq2seq work. These work, however, differ in terms of: (a) architecture – from unidirec-
tional, to bidirectional, and deep multi-layer RNNs; and (b) RNN type – which are long-short term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (Cho et al., 2014).

Another important difference between seq2seq work lies in what constitutes the input represen-
tation s. The early seq2seq work (Sutskever et al., 2014; Cho et al., 2014; Luong et al., 2015b;
Vinyals et al., 2015b) uses only the last encoder state to initialize the decoder and sets s = [ ]
in Eq. (1). Recently, Bahdanau et al. (2015) proposes an attention mechanism, a way to provide
seq2seq models with a random access memory, to handle long input sequences. This is accomplished
by setting s in Eq. (1) to be the set of encoder hidden states already computed. On the decoder side,
at each time step, the attention mechanism will decide how much information to retrieve from that
memory by learning where to focus, i.e., computing the alignment weights for all input positions.
Recent work such as (Xu et al., 2015; Jean et al., 2015a; Luong et al., 2015a; Vinyals et al., 2015a)
has found that it is crucial to empower seq2seq models with the attention mechanism.

3 MULTI-TASK SEQUENCE-TO-SEQUENCE LEARNING

We generalize the work of Dong et al. (2015) to the multi-task sequence-to-sequence learning set-
ting that includes the tasks of machine translation (MT), constituency parsing, and image caption
generation. Depending which tasks involved, we propose to categorize multi-task seq2seq learning
into three general settings. In addition, we will discuss the unsupervised learning tasks considered
as well as the learning process.

3.1 ONE-TO-MANY SETTING

This scheme involves one encoder and multiple decoders for tasks in which the encoder can be
shared, as illustrated in Figure 2. The input to each task is a sequence of English words. A separate
decoder is used to generate each sequence of output units which can be either (a) a sequence of tags
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English (unsupervised)

German (translation)

Tags (parsing)English

Figure 2: One-to-many Setting – one encoder, multiple decoders. This scheme is useful for either
multi-target translation as in Dong et al. (2015) or between different tasks. Here, English and Ger-
man imply sequences of words in the respective languages. The α values give the proportions of
parameter updates that are allocated for the different tasks.

for constituency parsing as used in (Vinyals et al., 2015a), (b) a sequence of German words for ma-
chine translation (Luong et al., 2015a), and (c) the same sequence of English words for autoencoders
or a related sequence of English words for the skip-thought objective (Kiros et al., 2015).

3.2 MANY-TO-ONE SETTING

This scheme is the opposite of the one-to-many setting. As illustrated in Figure 3, it consists of mul-
tiple encoders and one decoder. This is useful for tasks in which only the decoder can be shared, for
example, when our tasks include machine translation and image caption generation (Vinyals et al.,
2015b). In addition, from a machine translation perspective, this setting can benefit from a large
amount of monolingual data on the target side, which is a standard practice in machine translation
system and has also been explored for neural MT by Gulcehre et al. (2015).

English (unsupervised)

Image (captioning) English

German (translation)

Figure 3: Many-to-one setting – multiple encoders, one decoder. This scheme is handy for tasks in
which only the decoders can be shared.

3.3 MANY-TO-MANY SETTING

Lastly, as the name describes, this category is the most general one, consisting of multiple encoders
and multiple decoders. We will explore this scheme in a translation setting that involves sharing
multiple encoders and multiple decoders. In addition to the machine translation task, we will include
two unsupervised objectives over the source and target languages as illustrated in Figure 4.

3.4 UNSUPERVISED LEARNING TASKS

Our very first unsupervised learning task involves learning autoencoders from monolingual corpora,
which has recently been applied to sequence to sequence learning (Dai & Le, 2015). However, in
Dai & Le (2015)’s work, the authors only experiment with pretraining and then finetuning, but not
joint training which can be viewed as a form of multi-task learning (MTL). As such, we are very
interested in knowing whether the same trend extends to our MTL settings.

Additionally, we investigate the use of the skip-thought vectors (Kiros et al., 2015) in the context of
our MTL framework. Skip-thought vectors are trained by training sequence to sequence models on
pairs of consecutive sentences, which makes the skip-thought objective a natural seq2seq learning
candidate. A minor technical difficulty with skip-thought objective is that the training data must
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German (translation)

English (unsupervised) German (unsupervised)

English

Figure 4: Many-to-many setting – multiple encoders, multiple decoders. We consider this scheme
in a limited context of machine translation to utilize the large monolingual corpora in both the
source and the target languages. Here, we consider a single translation task and two unsupervised
autoencoder tasks.

consist of ordered sentences, e.g., paragraphs. Unfortunately, in many applications that include
machine translation, we only have sentence-level data where the sentences are unordered. To address
that, we split each sentence into two halves; we then use one half to predict the other half.

3.5 LEARNING

Dong et al. (2015) adopted an alternating training approach, where they optimize each task for a
fixed number of parameter updates (or mini-batches) before switching to the next task (which is a
different language pair). In our setting, our tasks are more diverse and contain different amounts of
training data. As a result, we allocate different numbers of parameter updates for each task, which
are expressed with the mixing ratio values αi (for each task i). Each parameter update consists of
training data from one task only. When switching between tasks, we select randomly a new task i
with probability αi∑

j
αj

.

Our convention is that the first task is the reference task with α1 = 1.0 and the number of training
parameter updates for that task is prespecified to be N . A typical task i will then be trained for αi

α1

·N
parameter updates. Such convention makes it easier for us to fairly compare the same reference task
in a single-task setting which has also been trained for exactly N parameter updates.

When sharing an encoder or a decoder, we share both the recurrent connections and the correspond-
ing embeddings.

4 EXPERIMENTS

We evaluate the multi-task learning setup on a wide variety of sequence-to-sequence tasks: con-
stituency parsing, image caption generation, machine translation, and a number of unsupervised
learning as summarized in Table 1.

4.1 DATA

Our experiments are centered around the translation task, where we aim to determine whether other
tasks can improve translation and vice versa. We use the WMT’15 data (Bojar et al., 2015) for
the English⇆German translation problem. Following Luong et al. (2015a), we use the 50K most
frequent words for each language from the training corpus.1 These vocabularies are then shared
with other tasks, except for parsing in which the target “language” has a vocabulary of 104 tags. We
use newstest2013 (3000 sentences) as a validation set to select our hyperparameters, e.g., mixing
coefficients. For testing, to be comparable with existing results in (Luong et al., 2015a), we use the
filtered newstest2014 (2737 sentences)2 for the English→German translation task and newstest2015
(2169 sentences)3 for the German→English task. See the summary in Table 1.

1The corpus has already been tokenized using the default tokenizer from Moses. Words not in these vocab-
ularies are represented by the token <unk>.

2
http://statmt.org/wmt14/test-filtered.tgz

3
http://statmt.org/wmt15/test.tgz
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Task
Train Valid Test Vocab Size Train Finetune
Size Size Size Source Target Epoch Start Cycle

English→German Translation 4.5M 3000 3003 50K 50K 12 8 1
German→English Translation 4.5M 3000 2169 50K 50K 12 8 1

English unsupervised 12.1M
Details in text

50K 50K 6 4 0.5
German unsupervised 13.8M 50K 50K 6 4 0.5

Penn Tree Bank Parsing 40K 1700 2416 50K 104 40 20 4

High-Confidence Corpus Parsing 11.0M 1700 2416 50K 104 6 4 0.5
Image Captioning 596K 4115 - - 50K 10 5 1

Table 1: Data & Training Details – Information about the different datasets used in this work. For
each task, we display the following statistics: (a) the number of training examples, (b) the sizes of
the vocabulary, (c) the number of training epochs, and (d) details on when and how frequent we
halve the learning rates (finetuning).

For the unsupervised tasks, we use the English and German monolingual corpora from WMT’15.4

Since in our experiments, unsupervised tasks are always coupled with translation tasks, we use the
same validation and test sets as the accompanied translation tasks.

For constituency parsing, we experiment with two types of corpora:

1. a small corpus – the widely used Penn Tree Bank (PTB) dataset (Marcus et al., 1993) and,

2. a large corpus – the high-confidence (HC) parse trees provided by Vinyals et al. (2015a).

The two parsing tasks, however, are evaluated on the same validation (section 22) and test (sec-
tion 23) sets from the PTB data. Note also that the parse trees have been linearized following
Vinyals et al. (2015a). Lastly, for image caption generation, we use a dataset of image and caption
pairs provided by Vinyals et al. (2015b).

4.2 TRAINING DETAILS

In all experiments, following Sutskever et al. (2014) and Luong et al. (2015b), we train deep LSTM
models as follows: (a) we use 4 LSTM layers each of which has 1000-dimensional cells and embed-
dings,5 (b) parameters are uniformly initialized in [-0.06, 0.06], (c) we use a mini-batch size of 128,
(d) dropout is applied with probability of 0.2 over vertical connections (Pham et al., 2014), (e) we
use SGD with a fixed learning rate of 0.7, (f) input sequences are reversed, and lastly, (g) we use a
simple finetuning schedule – after x epochs, we halve the learning rate every y epochs. The values x
and y are referred as finetune start and finetune cycle in Table 1 together with the number of training
epochs per task.

As described in Section 3, for each multi-task experiment, we need to choose one task to be the refer-
ence task (which corresponds to α1 = 1). The choice of the reference task helps specify the number
of training epochs and the finetune start/cycle values which we also when training that reference
task alone for fair comparison. To make sure our findings are reliable, we run each experimental
configuration twice and report the average performance in the format mean (stddev).

4.3 RESULTS

We explore several multi-task learning scenarios by combining a large task (machine translation)
with: (a) a small task – Penn Tree Bank (PTB) parsing, (b) a medium-sized task – image caption
generation, (c) another large task – parsing on the high-confidence (HC) corpus, and (d) lastly,
unsupervised tasks, such as autoencoders and skip-thought vectors. In terms of evaluation metrics,
we report both validation and test perplexities for all tasks. Additionally, we also compute test BLEU
scores (Papineni et al., 2002) for the translation task.

4The training sizes reported for the unsupervised tasks are only 10% of the original WMT’15 monolingual
corpora which we randomly sample from. Such reduced sizes are for faster training time and already about
three times larger than that of the parallel data. We consider using all the monolingual data in future work.

5For image caption generation, we use 1024 dimensions, which is also the size of the image embeddings.
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4.3.1 LARGE TASKS WITH SMALL TASKS

In this setting, we want to understand if a small task such as PTB parsing can help improve the
performance of a large task such as translation. Since the parsing task maps from a sequence of
English words to a sequence of parsing tags (Vinyals et al., 2015a), only the encoder can be shared
with an English→German translation task. As a result, this is a one-to-many MTL scenario (§3.1).

To our surprise, the results in Table 2 suggest that by adding a very small number of parsing mini-
batches (with mixing ratio 0.01, i.e., one parsing mini-batch per 100 translation mini-batches), we
can improve the translation quality substantially. More concretely, our best multi-task model yields
a gain of +1.5 BLEU points over the single-task baseline. It is worth pointing out that as shown in
Table 2, our single-task baseline is very strong, even better than the equivalent non-attention model
reported in (Luong et al., 2015a). Larger mixing coefficients, however, overfit the small PTB corpus;
hence, achieve smaller gains in translation quality.

For parsing, as Vinyals et al. (2015a) have shown that attention is crucial to achieve good parsing
performance when training on the small PTB corpus, we do not set a high bar for our attention-free
systems in this setup (better performances are reported in Section 4.3.3). Nevertheless, the parsing
results in Table 2 indicate that MTL is also beneficial for parsing, yielding an improvement of up to
+8.9 F1 points over the baseline.6 It would be interesting to study how MTL can be useful with the
presence of the attention mechanism, which we leave for future work.

Task
Translation Parsing

Valid ppl Test ppl Test BLEU Test F1

(Luong et al., 2015a) - 8.1 14.0 -
Our single-task systems

Translation 8.8 (0.3) 8.3 (0.2) 14.3 (0.3) -

PTB Parsing - - - 43.3 (1.7)
Our multi-task systems

Translation + PTB Parsing (1x) 8.5 (0.0) 8.2 (0.0) 14.7 (0.1) 54.5 (0.4)

Translation + PTB Parsing (0.1x) 8.3 (0.1) 7.9 (0.0) 15.1 (0.0) 55.2 (0.0)

Translation + PTB Parsing (0.01x) 8.2 (0.2) 7.7 (0.2) 15.8 (0.4) 39.8 (2.7)

Table 2: English→German WMT’14 translation & Penn Tree Bank parsing results – shown
are perplexities (ppl), BLEU scores, and parsing F1 for various systems. For muli-task models,
reference tasks are in italic with the mixing ratio in parentheses. Our results are averaged over two
runs in the format mean (stddev). Best results are highlighted in boldface.

4.3.2 LARGE TASKS WITH MEDIUM TASKS

We investigate whether the same pattern carries over to a medium task such as image caption gen-
eration. Since the image caption generation task maps images to a sequence of English words
(Vinyals et al., 2015b; Xu et al., 2015), only the decoder can be shared with a German→English
translation task. Hence, this setting falls under the many-to-one MTL setting (§3.2).

The results in Table 3 show the same trend we observed before, that is, by training on another task for
a very small fraction of time, the model improves its performance on its main task. Specifically, with
5 parameter updates for image caption generation per 100 updates for translation (so the mixing ratio
of 0.05), we obtain a gain of +0.7 BLEU scores over a strong single-task baseline. Our baseline is
almost a BLEU point better than the equivalent non-attention model reported in Luong et al. (2015a).

4.3.3 LARGE TASKS WITH LARGE TASKS

Our first set of experiments is almost the same as the one-to-many setting in Section 4.3.1 which
combines translation, as the reference task, with parsing. The only difference is in terms of parsing

6While perplexities correlate well with BLEU scores as shown in (Luong et al., 2015b), we observe empir-
ically in Section 4.3.3 that parsing perplexities are only reliable if it is less than 1.3. Hence, we omit parsing
perplexities in Table 2 for clarity. The parsing test perplexities (averaged over two runs) for the last four rows
in Table 2 are 1.95, 3.05, 2.14, and 1.66. Valid perplexities are similar.
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Task
Translation Captioning

Valid ppl Test ppl Test BLEU Valid ppl

(Luong et al., 2015a) - 14.3 16.9 -

Our single-task systems

Translation 11.0 (0.0) 12.5 (0.2) 17.8 (0.1) -

Captioning - - - 30.8 (1.3)

Our multi-task systems

Translation + Captioning (1x) 11.9 14.0 16.7 43.3
Translation + Captioning (0.1x) 10.5 (0.4) 12.1 (0.4) 18.0 (0.6) 28.4 (0.3)
Translation + Captioning (0.05x) 10.3 (0.1) 11.8 (0.0) 18.5 (0.0) 30.1 (0.3)
Translation + Captioning (0.01x) 10.6 (0.0) 12.3 (0.1) 18.1 (0.4) 35.2 (1.4)

Table 3: German→English WMT’15 translation & captioning results – shown are perplexities
(ppl) and BLEU scores for various tasks with similar format as in Table 2. Reference tasks are in
italic with mixing ratios in parentheses. The average results of 2 runs are in mean (stddev) format.

data. Instead of using the small Penn Tree Bank corpus, we consider a large parsing resource, the
high-confidence (HC) corpus, which is provided by Vinyals et al. (2015a). As highlighted in Table 4,
the trend is consistent; MTL helps boost translation quality by up to +0.9 BLEU points.

Task
Translation

Valid ppl Test ppl Test BLEU

(Luong et al., 2015a) - 8.1 14.0

Our systems

Translation 8.8 (0.3) 8.3 (0.2) 14.3 (0.3)

Translation + HC Parsing (1x) 8.5 (0.0) 8.1 (0.1) 15.0 (0.6)
Translation + HC Parsing (0.1x) 8.2 (0.3) 7.7 (0.2) 15.2 (0.6)
Translation + HC Parsing (0.05x) 8.4 (0.0) 8.0 (0.1) 14.8 (0.2)

Table 4: English→German WMT’14 translation – shown are perplexities (ppl) and BLEU scores
of various translation models. Our multi-task systems combine translation and parsing on the high-
confidence corpus together. Mixing ratios are in parentheses and the average results over 2 runs are
in mean (stddev) format. Best results are bolded.

The second set of experiments shifts the attention to parsing by having it as the reference task. We
show in Table 5 results that combine parsing with either (a) the English autoencoder task or (b)
the English→German translation task. Our models are compared against the best attention-based
systems in (Vinyals et al., 2015a), including the state-of-the-art result of 92.8 F1.

Before discussing the multi-task results, we note a few interesting observations. First, very small
parsing perplexities, close to 1.1, can be achieved with large training data.7 Second, our baseline
system can obtain a very competitive F1 score of 92.2, rivaling Vinyals et al. (2015a)’s systems. This
is rather surprising since our models do not use any attention mechanism. A closer look into these
models reveal that there seems to be an architectural difference: Vinyals et al. (2015a) use 3-layer
LSTM with 256 cells and 512-dimensional embeddings; whereas our models use 4-layer LSTM with
1000 cells and 1000-dimensional embeddings. This further supports findings in (Jozefowicz et al.,
2016) that larger networks matter for sequence models.

For the multi-task results, while autoencoder does not seem to help parsing, translation does. At
the mixing ratio of 0.05, we obtain a non-negligible boost of 0.2 F1 over the baseline and with
92.4 F1, our multi-task system is on par with the best single system reported in (Vinyals et al.,
2015a). Furthermore, by ensembling 6 different multi-task models (trained with the translation task
at mixing ratios of 0.1, 0.05, and 0.01), we are able to establish a new state-of-the-art result in
English constituent parsing with 93.0 F1 score.

7Training solely on the small Penn Tree Bank corpus can only reduce the perplexity to at most 1.6, as
evidenced by poor parsing results in Table 2. At the same time, these parsing perplexities are much smaller than
what can be achieved by a translation task. This is because parsing only has 104 tags in the target vocabulary
compared to 50K words in the translation case. Note that 1.0 is the theoretical lower bound.
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Task
Parsing

Valid ppl Test F1

LSTM+A (Vinyals et al., 2015a) - 92.5
LSTM+A+E (Vinyals et al., 2015a) - 92.8

Our systems

HC Parsing 1.12/1.12 92.2 (0.1)
HC Parsing + Autoencoder (1x) 1.12/1.12 92.1 (0.1)
HC Parsing + Autoencoder (0.1x) 1.12/1.12 92.1 (0.1)
HC Parsing + Autoencoder (0.01x) 1.12/1.13 92.0 (0.1)

HC Parsing + Translation (1x) 1.12/1.13 91.5 (0.2)
HC Parsing + Translation (0.1x) 1.13/1.13 92.0 (0.2)
HC Parsing + Translation (0.05x) 1.11/1.12 92.4 (0.1)
HC Parsing + Translation (0.01x) 1.12/1.12 92.2 (0.0)
Ensemble of 6 multi-task systems - 93.0

Table 5: Large-Corpus parsing results – shown are perplexities (ppl) and F1 scores for various
parsing models. Mixing ratios are in parentheses and the average results over 2 runs are in mean
(stddev) format. We show the individual perplexities for all runs due to small differences among
them. For Vinyals et al. (2015a)’s parsing results, LSTM+A represents a single LSTM with atten-
tion, whereas LSTM+A+E indicates an ensemble of 5 systems. Important results are bolded.

4.3.4 MULTI-TASKS AND UNSUPERVISED LEARNING

Our main focus in this section is to determine whether unsupervised learning can help improve
translation. Specifically, we follow the many-to-many approach described in Section 3.3 to couple
the German→English translation task with two unsupervised learning tasks on monolingual corpora,
one per language. The results in Tables 6 show a similar trend as before, a small amount of other
tasks, in this case the autoencoder objective with mixing coefficient 0.05, improves the translation
quality by +0.5 BLEU scores. However, as we train more on the autoencoder task, i.e. with larger
mixing ratios, the translation performance gets worse.

Task
Translation German English

Valid ppl Test ppl Test BLEU Test ppl Test ppl

(Luong et al., 2015a) - 14.3 16.9 - -

Our single-task systems

Translation 11.0 (0.0) 12.5 (0.2) 17.8 (0.1) - -

Our multi-task systems with Autoencoders

Translation + autoencoders (1.0x) 12.3 13.9 16.0 1.01 2.10
Translation + autoencoders (0.1x) 11.4 12.7 17.7 1.13 1.44
Translation + autoencoders (0.05x) 10.9 (0.1) 12.0 (0.0) 18.3 (0.4) 1.40 (0.01) 2.38 (0.39)

Our multi-task systems with Skip-thought Vectors

Translation + skip-thought (1x) 10.4 (0.1) 10.8 (0.1) 17.3 (0.2) 36.9 (0.1) 31.5 (0.4)
Translation + skip-thought (0.1x) 10.7 (0.0) 11.4 (0.2) 17.8 (0.4) 52.8 (0.3) 53.7 (0.4)
Translation + skip-thought (0.01x) 11.0 (0.1) 12.2 (0.0) 17.8 (0.3) 76.3 (0.8) 142.4 (2.7)

Table 6: German→English WMT’15 translation & unsupervised learning results – shown are
perplexities for translation and unsupervised learning tasks. We experiment with both autoencoders
and skip-thought vectors for the unsupervised objectives. Numbers in mean (stddev) format are the
average results of 2 runs; others are for 1 run only.

Skip-thought objectives, on the other hand, behave differently. If we merely look at the perplexity
metric, the results are very encouraging: with more skip-thought data, we perform better consistently
across both the translation and the unsupervised tasks. However, when computing the BLEU scores,
the translation quality degrades as we increase the mixing coefficients. We anticipate that this is
due to the fact that the skip-thought objective changes the nature of the translation task when using
one half of a sentence to predict the other half. It is not a problem for the autoencoder objectives,
however, since one can think of autoencoding a sentence as translating into the same language.
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We believe these findings pose interesting challenges in the quest towards better unsupervised objec-
tives, which should satisfy the following criteria: (a) a desirable objective should be compatible with
the supervised task in focus, e.g., autoencoders can be viewed as a special case of translation, and (b)
with more unsupervised data, both intrinsic and extrinsic metrics should be improved; skip-thought
objectives satisfy this criterion in terms of the intrinsic metric but not the extrinsic one.

5 CONCLUSION

In this paper, we showed that multi-task learning (MTL) can improve the performance of the
attention-free sequence to sequence model of (Sutskever et al., 2014). We found it surprising that
training on syntactic parsing and image caption data improved our translation performance, given
that these datasets are orders of magnitude smaller than typical translation datasets. Furthermore, we
have established a new state-of-the-art result in constituent parsing with an ensemble of multi-task
models. We also show that the two unsupervised learning objectives, autoencoder and skip-thought,
behave differently in the MTL context involving translation. We hope that these interesting findings
will motivate future work in utilizing unsupervised data for sequence to sequence learning. A crit-
icism of our work is that our sequence to sequence models do not employ the attention mechanism
(Bahdanau et al., 2015). We leave the exploration of MTL with attention for future work.
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