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Abstract

We discuss two named-entity recognition mod-
els which use characters and charactern-grams
either exclusively or as an important part of
their data representation. The first model
is a character-level HMM with minimal con-
text information, and the second model is a
maximum-entropy conditional markov model
with substantially richer context features. Our
best model achieves an overall F1 of 86.07%
on the English test data (92.31% on the devel-
opment data). This number represents a 25%
error reduction over the same model without
word-internal (substring) features.

1 Introduction

For most sequence-modeling tasks with word-level eval-
uation, including named-entity recognition and part-of-
speech tagging, it has seemed natural to use entire words
as the basic input features. For example, the classic
HMM view of these two tasks is one in which the ob-
servations are words and the hidden states encode class
labels. However, because of data sparsity, sophisti-
cated unknown word models are generally required for
good performance. A common approach is to extract
word-internal features from unknown words, for example
suffix, capitalization, or punctuation features (Mikheev,
1997, Wacholder et al., 1997, Bikel et al., 1997). One
then treats the unknown word as a collection of such fea-
tures. Having such unknown-word models as an add-on
is perhaps a misplaced focus: in these tasks, providing
correct behavior on unknown words is typically the key
challenge.

Here, we examine the utility of taking character se-
quences as a primary representation. We present two
models in which the basic units are characters and char-
actern-grams, instead of words and word phrases. Ear-
lier papers have taken a character-level approach to
named entity recognition (NER), notably Cucerzan and

Yarowsky (1999), which used prefix and suffix tries,
though to our knowledge incorporating all charactern-
grams is new. In section 2, we discuss a character-level
HMM, while in section 3 we discuss a sequence-free
maximum-entropy (maxent) classifier which usesn-gram
substring features. Finally, in section 4 we add additional
features to the maxent model, and chain these models
into a conditional markov model (CMM), as used for tag-
ging (Ratnaparkhi, 1996) or earlier NER work (Borth-
wick, 1999).

2 A Character-Level HMM

Figure 1 shows a graphical model representation of our
character-level HMM. Characters are emitted one at a
time, and there is one state per character. Each state’s
identity depends only on the previous state. Each char-
acter’s identity depends on both the current state and on
the previousn − 1 characters. In addition to this HMM
view, it may also be convenient to think of the local emis-
sion models as type-conditionaln-gram models. Indeed,
the character emission model in this section is directly
based on then-gram proper-name classification engine
described in (Smarr and Manning, 2002). The primary
addition is the state-transition chaining, which allows the
model to do segmentation as well as classification.

When using character-level models for word-evaluated
tasks, one would not want multiple characters inside a
single word to receive different labels. This can be
avoided in two ways: by explicitly locking state tran-
sitions inside words, or by careful choice of transition
topology. In our current implementation, we do the latter.
Each state is a pair(t, k) wheret is an entity type (such
asPERSON, and including anothertype) andk indicates
the length of time the system has been in statet . There-
fore, a state like (PERSON, 2) indicates the second letter
inside a person phrase. The final letter of a phrase is a fol-
lowing space (we insert one if there is none) and the state
is a special final state like (PERSON, F). Additionally,
oncek reaches ourn-gram history order, it stays there.
We then use empirical, unsmoothed estimates for state-



Description ALL LOC MISC ORG PER

Official Baseline 71.2 80.5 83.5 66.4 55.2
Word-level HMM 74.5 79.5 69.7 67.5 77.6
Char-level, no conx 82.2 86.1 82.2 73.4 84.6
Char-level, context 83.2 86.9 83.0 75.1 85.6

Table 1: HMM F1 performance, English development set. 
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Figure 1: A character-level HMM. Thec nodes are char-
acter observations ands nodes are entity types.

state transitions. This annotation and estimation enforces
consistent labellings in practice. For example, (PERSON,
2) can only transition to the next state (PERSON, 3) or the
final state (PERSON, F). Final states can only transition
to beginning states, like (other, 1).

For emissions, we must estimate a quantity of
the form P(c0|c−(n−1), . . . , c−1, s), for example,
P(s|Thoma, PERSON, 6).1 We use ann-gram model of
ordern = 6.2 The n-gram estimates are smoothed via
deleted interpolation.

Given this model, we can do Viterbi decoding in
the standard way. To be clear on what this model
does and does not capture, we consider a few exam-
ples ( indicates a space). First, we might be asked for
P(e|to Denv, LOC, 5). In this case, we know both that
we are in the middle of a location that begins withDenv
and also that the preceding context wasto. In essence,
encodingk into the state lets us distinguish the begin-
nings of phrases, which lets us model trends like named
entities (all the classes besidesother) generally starting
with capital letters in English. Second, we may be asked
for quantities like P( |Italy, LOC, F), which allows us
to model the ends of phrases. Here we have a slight com-
plexity: by the notation, one would expect such emissions
to have probability 1, since nothing else can be emitted
from a final state. In practice, we have a special stop sym-
bol in our n-gram counts, and the probability of emitting
a space from a final state is the probability of the n-gram
having chosen the stop character.3

1We index characters, and other vector elements by relative
location subscripts:c0 is the current character,c1 is the follow-
ing character, andc−1 is the previous character.

2The smaller space of characters allows us to obtain dense
estimates for longern-grams than is possible with word-level
models. The valuen = 6 was the empirically optimal order.

3This can be cleaned up conceptually by considering the en-
tire process to have been a hierarchical HMM (Fine et al., 1998),
where then-gram model generates the entire phrase, followed
by a tier pop up to the phrase transition tier.

Using this model, we tested two variants, one in
which preceding context was discarded (for example,
P(e|to Denv, LOC, 5) was turned into P(e|xx Denv,

LOC, 5)), and another where context was used as out-
lined above. For comparison, we also built a first-order
word-level HMM; the results are shown in table 1. We
give F1 both per-category and overall. The word-level
model and the (context disabled) character-level model
are intended as a rough minimal pair, in that the only in-
formation crossing phrase boundaries was the entity type,
isolating the effects of character- vs word-level modeling
(a more precise minimal pair is examined in section 3).
Switching to the character model raised the overall score
greatly, from 74.5% to 82.2%. On top of this, context
helped, but substantially less, bringing the total to 83.2%.

We did also try to incorporate gazetteer information by
addingn-gram counts from gazetteer entries to the train-
ing counts that back the above character emission model.
However, this reduced performance (by 2.0% with con-
text on). The supplied gazetteers appear to have been
built from the training data and so do not increase cover-
age, and provide only a flat distribution of name phrases
whose empirical distributions are very spiked.

3 A Character-Feature Based Classifier

Given the amount of improvement from using a model
backed by charactern-grams instead of wordn-grams,
the immediate question is whether this benefit is comple-
mentary to the benefit from features which have tradition-
ally been of use in word level systems, such as syntactic
context features, topic features, and so on.

To test this, we constructed a maxent classifier which
locally classifies single words, without modeling the en-
tity type sequencess.4 These local classifiers map a fea-
ture representation of each word position to entity types,
such asPERSON.5 We present a hill-climb over feature
sets for the English development set data in table 2. First,
we tried only the local word as a feature; the result was
that each word was assigned its most common class in
the training data. The overall F-score was 52.29%, well
below the official CoNLL baseline of 71.18%.6 We next
addedn-gram features; specifically, we framed each word
with special start and end symbols, and then added ev-
ery contiguous substring to the feature list. Note that
this subsumes the entire-word features. Using the sub-
string features alone scored 73.10%, already breaking the

4The classifier was trained using conjugate gradient descent,
used equal-scale gaussian priors for smoothing, and learned
models of over 800K features in approximately 2 hours.

5The B-/I- distinction in the data was collapsed, though see
section 4.

6The latter assigns phrases at once, which is generally supe-
rior, but is noticeably worse at multi-word person names, since
it cannot synthesize new first-name/last-name pairs.



Description Added Features ALL LOC MISC ORG PER
Words w0 52.29 41.03 70.18 60.43 60.14
Official Baseline – 71.18 80.52 83.52 66.43 55.20
NGrams n(w0) 73.10 80.95 71.67 59.06 77.23
Tags t0 74.17 81.27 74.46 59.61 78.73
Simple Context w−1, w0, t−1, t1 82.39 87.77 82.91 70.62 85.77
More Context 〈w−1, w0〉, 〈w0, w1〉, 〈t−1, t0〉, 〈t0, t1〉 83.09 89.13 83.51 71.31 85.89
Simple Sequence s−1, 〈s−1, t−1, t0〉 85.44 90.09 80.95 76.40 89.66
More Sequence 〈s−2, s−1〉, 〈s−2, s−1, t−2, t−1, t0〉 87.21 90.76 81.01 81.71 90.80
Final (see text) 92.27 94.39 87.10 88.44 95.41

Table 2: CMM performance with incrementally added featureson the English development set.

the phrase-based CoNLL baseline, though lower than the
no-context HMM, which better models the context inside
phrases. Adding a current tag feature gave a score of
74.17%. At this point, the bulk of outstanding errors were
plausibly attributable to insufficient context information.
Adding even just the previous and next words and tags
as (atomic) features raised performance to 82.39%. More
complex, joint context features which paired the current
word and tag with the previous and next words and tags
raised the score further to 83.09%, nearly to the level of
the HMM, still without actually having any model of pre-
vious classification decisions.

4 A Character-Based CMM

In order to include state sequence features, which al-
low the classifications at various positions to interact, we
have to abandon classifying each position independently.
Sequence-sensitive features can be included by chain-
ing our local classifiers together and performing joint
inference, i.e., by building a conditional markov model
(CMM), also known as a maximum entropy markov
model (McCallum et al., 2000).

Previous classification decisions are clearly relevant:
for example the sequenceGrace Road is a single loca-
tion, not a person’s name adjacent to a location (which is
the erroneous output of the model in section 3). Adding
features representing the previous classification decision
(s−1) raised the score 2.35% to 85.44%. We found know-
ing that the previous word was another wasn’t par-
ticularly useful without also knowing its part-of-speech
(e.g., a preceding preposition might indicate a location).
Joint tag-sequence features, along with longer distance
sequence and tag-sequence features, gave 87.21%.

The remaining improvements involved a number of
other features which directly targetted observed error
types. These features included letter type pattern features
(for example20-month would becomed-x for digit-
lowercase andItalywould becomeXx for mixed case).
This improved performance substantially, for example al-
lowing the system to detect ALL CAPS regions. Ta-
ble 4 shows an example of a local decision forGrace in

the contextat Grace Road, using all of the features
defined to date. Note that the evidence againstGrace
as a name completely overwhelms then-gram and word
preference forPERSON. Other features included second-
previous and second-next words (when the previous or
next words were very short) and a marker for capitalized
words whose lowercase forms had also been seen. The fi-
nal system also contained some simple error-driven post-
processing. In particular, repeated sub-elements (usually
last names) of multi-word person names were given type
PERSON, and a crude heuristic restoration of B- prefixes
was performed. In total, this final system had an F-score
of 92.31% on the English development set. Table 3 gives
a more detailed breakdown of this score, and also gives
the results of this system on the English test set, and both
German data sets.

5 Conclusion

The primary argument of this paper is that character sub-
strings are a valuable, and, we believe, underexploited
source of model features. In an HMM with an admittedly
very local sequence model, switching from a word model
to a character model gave an error reduction of about
30%. In the final, much richer chained maxent setting,
the reduction from the best model minusn-gram features
to the reported best model was about 25% – smaller, but
still substantial. This paper also again demonstrates how
the ease of incorporating features into a discriminative
maxent model allows for productive feature engineering.



English dev. Precision Recall Fβ=1

LOC 94.44 94.34 94.39
MISC 90.62 83.84 87.10
ORG 87.63 89.26 88.44
PER 93.86 97.01 95.41
Overall 92.15 92.39 92.27

English test Precision Recall Fβ=1

LOC 90.04 89.93 89.98
MISC 83.49 77.07 78.85
ORG 82.49 78.57 80.48
PER 86.66 95.18 90.72
Overall 86.12 86.49 86.31

German dev. Precision Recall Fβ=1

LOC 75.53 66.13 70.52
MISC 78.71 47.23 59.03
ORG 77.57 53.51 63.33
PER 72.36 71.02 71.69
Overall 75.36 60.36 67.03

German test Precision Recall Fβ=1

LOC 78.01 69.57 73.54
MISC 75.90 47.01 58.06
ORG 73.26 51.75 60.65
PER 87.68 79.83 83.57
Overall 80.38 65.04 71.90

Table 3: Final results obtained for the development and
test sets for each language on the shared task.
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