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Abstract

One of the main obstacles to produc-
ing high quality joint models is the lack
of jointly annotated data. Joint model-
ing of multiple natural language process-
ing tasks outperforms single-task models
learned from the same data, but still under-
performs compared to single-task models
learned on the more abundant quantities
of available single-task annotated data. In
this paper we present a novel model which
makes use of additional single-task anno-
tated data to improve the performance of
a joint model. Our model utilizes a hier-
archical prior to link the feature weights
for shared features in several single-task
models and the joint model. Experiments
on joint parsing and named entity recog-
nition, using the OntoNotes corpus, show
that our hierarchical joint model can pro-
duce substantial gains over a joint model
trained on only the jointly annotated data.

1 Introduction
Joint learning of multiple types of linguistic struc-
ture results in models which produce more consis-
tent outputs, and for which performance improves
across all aspects of the joint structure. Joint
models can be particularly useful for producing
analyses of sentences which are used as input for
higher-level, more semantically-oriented systems,
such as question answering and machine trans-
lation. These high-level systems typically com-
bine the outputs from many low-level systems,
such as parsing, named entity recognition (NER)
and coreference resolution. When trained sepa-
rately, these single-task models can produce out-
puts which are inconsistent with one another, such
as named entities which do not correspond to any
nodes in the parse tree (see Figure 1 for an ex-
ample). Moreover, one expects that the different
types of annotations should provide useful infor-
mation to one another, and that modeling them

jointly should improve performance. Because a
named entity should correspond to a node in the
parse tree, strong evidence about either aspect of
the model should positively impact the other as-
pect.

However, designing joint models which actu-
ally improve performance has proven challeng-
ing. The CoNLL 2008 shared task (Surdeanu
et al., 2008) was on joint parsing and semantic
role labeling, but the best systems (Johansson and
Nugues, 2008) were the ones which completely
decoupled the tasks. While negative results are
rarely published, this was not the first failed at-
tempt at joint parsing and semantic role label-
ing (Sutton and McCallum, 2005). There have
been some recent successes with joint modeling.
Zhang and Clark (2008) built a perceptron-based
joint segmenter and part-of-speech (POS) tagger
for Chinese, and Toutanova and Cherry (2009)
learned a joint model of lemmatization and POS
tagging which outperformed a pipelined model.
Adler and Elhadad (2006) presented an HMM-
based approach for unsupervised joint morpho-
logical segmentation and tagging of Hebrew, and
Goldberg and Tsarfaty (2008) developed a joint
model of segmentation, tagging and parsing of He-
brew, based on lattice parsing. No discussion of
joint modeling would be complete without men-
tion of (Miller et al., 2000), who trained a Collins-
style generative parser (Collins, 1997) over a syn-
tactic structure augmented with thetemplate entity
andtemplate relations annotations for the MUC-7
shared task.

One significant limitation for many joint mod-
els is the lack of jointly annotated data. We built
a joint model of parsing and named entity recog-
nition (Finkel and Manning, 2009b), which had
small gains on parse performance and moderate
gains on named entity performance, when com-
pared with single-task models trained on the same
data. However, the performance of our model,
trained using the OntoNotes corpus (Hovy et al.,
2006), fell short of separate parsing and named



FRAG

INTJ

UH

Like

NP

NP

DT

a

NN

gross

PP

IN

of

NP

QP

DT

a

CD

[billion

NNS

dollars]MONEY

NP

JJ

last

NN

year

Figure 1: Example from the data where separate parse and named entity models give conflicting output.

entity models trained on larger corpora, annotated
with only one type of information.

This paper addresses the problem of how to
learn high-quality joint models with smaller quan-
tities of jointly-annotated data that has been aug-
mented with larger amounts of single-task an-
notated data. To our knowledge this work is
the first attempt at such a task. We use a hi-
erarchical prior to link a joint model trained on
jointly-annotated data with other single-task mod-
els trained on single-task annotated data. The key
to making this work is for the joint model to share
some features with each of the single-task models.
Then, the singly-annotated data can be used to in-
fluence the feature weights for the shared features
in the joint model. This is an important contribu-
tion, because it provides all the benefits of joint
modeling, but without the high cost of jointly an-
notating large corpora. We applied our hierarchi-
cal joint model to parsing and named entity recog-
nition, and it reduced errors by over20% on both
tasks when compared to a joint model trained on
only the jointly annotated data.

2 Related Work

Our task can be viewed as an instance ofmulti-task
learning, a machine learning paradigm in which
the objective is to simultaneously solve multiple,
related tasks for which you have separate labeled
training data. Many schemes for multitask learn-
ing, including the one we use here, are instances
of hierarchical models. There has not been much
work on multi-task learning in the NLP com-
munity; Daumé III (2007) and Finkel and Man-
ning (2009a) both build models for multi-domain
learning, a variant on domain adaptation where
there exists labeled training data for all domains
and the goal is to improve performance on all of

them. Ando and Zhang (2005) utilized a multi-
task learner within their semi-supervised algo-
rithm to learn feature representations which were
useful across a large number of related tasks. Out-
side of the NLP community, Elidan et al. (2008)
used an undirected Bayesian transfer hierarchy
to jointly model the shapes of multiple mammal
species. Evgeniou et al. (2005) applied a hier-
archical prior to modeling exam scores of stu-
dents. Other instances of multi-task learning in-
clude (Baxter, 1997; Caruana, 1997; Yu et al.,
2005; Xue et al., 2007). For a more general discus-
sion of hierarchical models, we direct the reader to
Chapter 5 of (Gelman et al., 2003) and Chapter 12
of (Gelman and Hill, 2006).

3 Hierarchical Joint Learning

In this section we will discuss the main con-
tribution of this paper, our hierarchical joint
model which improves joint modeling perfor-
mance through the use ofsingle-task models
which can be trained onsingly-annotated data.
Our experiments are on a joint parsing and named
entity task, but the technique is more general and
only requires that thebase models (the joint model
and single-task models) share some features. This
section covers the general technique, and we will
cover the details of the parsing, named entity, and
joint models that we use in Section 4.

3.1 Intuitive Overview

As discussed, we have a joint model which re-
quires jointly-annotated data, and several single-
task models which only require singly-annotated
data. The key to our hierarchical model is that the
joint model must have features in common with
each of the single models, though it can also have
features which are only present in the joint model.
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Figure 2: A graphical representation of our hierar-
chical joint model. There are separate base models
for just parsing, just NER, and joint parsing and
NER. The parameters for these models are linked
via a hierarchical prior.

Each model has its own set of parameters (feature
weights). However, parameters for the features
which are shared between the single-task models
and the joint model are able to influence one an-
other via a hierarchical prior. This prior encour-
ages the learned weights for the different models
to be similar to one another. After training has
been completed, we retain only the joint model’s
parameters. Our resulting joint model is of higher
quality than a comparable joint model trained on
only the jointly-annotated data, due to all of the ev-
idence provided by the additional single-task data.

3.2 Formal Model

We have a setM of three base models: a
parse-only model, an NER-only model and a
joint model. These have corresponding log-
likelihood functionsLp(Dp; θp), Ln(Dn; θn), and
Lj(Dj ; θj), where theDs are the training data for
each model, and theθs are the model-specific pa-
rameter (feature weight) vectors. These likelihood
functions donot include priors over theθs. For
representational simplicity, we assume that each
of these vectors is the same size and corresponds
to the same ordering of features. Features which
don’t apply to a particular model type (e.g., parse
features in the named entity model) will always
be zero, so their weights have no impact on that
model’s likelihood function. Conversely, allowing
the presence of those features in models for which
they do not apply will not influence their weights
in the other models because there will be no evi-
dence about them in the data. These three models
are linked by a hierarchical prior, and their fea-
ture weight vectors are all drawn from this prior.

The parametersθ∗ for this prior have the same di-
mensionality as the model-specific parametersθm

and are drawn from another, top-level prior. In our
case, this top-level prior is a zero-mean Gaussian.1

The graphical representation of our hierarchical
model is shown in Figure 2. The log-likelihood of
this model is

Lhier-joint(D; θ) = (1)

∑

m∈M

(

Lm(Dm; θm) −
∑

i

(θm,i − θ∗,i)
2

2σ2
m

)

−
∑

i

(θ∗,i − µi)
2

2σ2
∗

The first summation in this equation computes the
log-likelihood of each model, using the data and
parameters which correspond to that model, and
the prior likelihood of that model’s parameters,
based on a Gaussian prior centered around the
top-level, non-model-specific parametersθ∗, and
with model-specific varianceσm. The final sum-
mation in the equation computes the prior likeli-
hood of the top-level parametersθ∗ according to a
Gaussian prior with varianceσ∗ and meanµ (typ-
ically zero). This formulation encourages each
base model to have feature weights similar to the
top-level parameters (and hence one another).

The effects of the variancesσm andσ∗ warrant
some discussion.σ∗ has the familiar interpretation
of dictating how much the model “cares” about
feature weights diverging from zero (orµ). The
model-specific variances,σm, have an entirely dif-
ferent interpretation. They dictate how how strong
the penalty is for the domain-specific parameters
to diverge from one another (via their similarity to
θ∗). Whenσm are very low, then they are encour-
aged to be very similar, and taken to the extreme
this is equivalent to completely tying the parame-
ters between the tasks. Whenσm are very high,
then there is less encouragement for the parame-
ters to be similar, and taken to the extreme this is
equivalent to completely decoupling the tasks.

We need to compute partial derivatives in or-
der to optimize the model parameters. The partial
derivatives for the parameters for each base model
m are given by:

∂Lhier(D; θ)

∂θm,i

=
∂Lm(Dm, θm)

∂θm,i

−
θm,i − θ∗,i

σ2
d

(2)
where the first term is the partial derivative ac-
cording to the base model, and the second term is

1Though we use a zero-mean Gaussian prior, this top-
level prior could take many forms, including anL1 prior, or
another hierarchical prior.



the prior centered around the top-level parameters.
The partial derivatives for the top level parameters
θ∗ are:

∂Lhier(D; θ)

∂θ∗,i
=

(
∑

m∈M

θ∗,i − θm,i

σ2
m

)
−

θ∗,i − µi

σ2
∗

(3)
where the first term relates to how far each model-
specific weight vector is from the top-level param-
eter values, and the second term relates how far
each top-level parameter is from zero.

When a model has strong evidence for a feature,
effectively what happens is that it pulls the value
of the top-level parameter for that feature closer to
the model-specific value for it. When it has little
or no evidence for a feature then it will be pulled
in the direction of the top-level parameter for that
feature, whose value was influenced by the models
which have evidence for that feature.

3.3 Optimization with Stochastic Gradient
Descent

Inference in joint models tends to be slow, and of-
ten requires the use of stochastic optimization in
order for the optimization to be tractable. L-BFGS
and gradient descent, two frequently used numer-
ical optimization algorithms, require computing
the value and partial derivatives of the objective
function using the entire training set. Instead,
we use stochastic gradient descent. It requires a
stochastic objective function, which is meant to be
a low computational cost estimate of the real ob-
jective function. In most NLP models, such as lo-
gistic regression with a Gaussian prior, computing
the stochastic objective function is fairly straight-
forward: you compute the model likelihood and
partial derivatives for a randomly sampled subset
of the training data. When computing the term
for the prior, it must be rescaled by multiplying
its value and derivatives by the proportion of the
training data used. The stochastic objective func-
tion, whereD̂ ⊆ D is a randomly drawn subset of
the full training set, is given by

Lstoch(D; θ) = Lorig(D̂; θ) −
|D̂|

|D|

∑

i

(θ∗,i)
2

2σ2
∗

(4)
This is astochastic function, and multiple calls to
it with the sameD and θ will produce different
values becausêD is resampled each time. When
designing a stochastic objective function, the crit-
ical fact to keep in mind is that the summed values
and partial derivatives for any split of the data need
to be equal to that of the full dataset. In practice,

stochastic gradient descent only makes use of the
partial derivatives and not the function value, so
we will focus the remainder of the discussion on
how to rescale the partial derivatives.

We now describe the more complicated case
of stochastic optimization with a hierarchical ob-
jective function. For the sake of simplicity, let
us assume that we are using a batch size of one,
meaning|D̂| = 1 in the above equation. Note
that in the hierarchical model, each datum (sen-
tence) in each base model should be weighted
equally, so whichever dataset is the largest should
be proportionally more likely to have one of its
data sampled. For the sampled datumd, we then
compute the function value and partial derivatives
with respect to the correct base model for that da-
tum. When we rescale the model-specific prior, we
rescale based on the number of data in that model’s
training set,not the total number of data in all the
models combined. Having uniformly randomly
drawn datumd ∈

⋃
m∈M Dm, let m(d) ∈ M

tell us to which model’s training data the datum
belongs. The stochastic partial derivatives will
equal zero for all model parametersθm such that
m 6= m(d), and forθm(d) it becomes:

∂Lhier-stoch(D; θ)

∂θm(d),i
= (5)

∂Lm(d)({d}; θm(d))

∂θm(d),i
−

1

|Dm(d)|

(
θm(d),i − θ∗,i

σ2
d

)

Now we will discuss the stochastic partial deriva-
tives with respect to the top-level parametersθ∗,
which requires modifying Equation 3. The first
term in that equation is a summation over all
the models. In the stochastic derivative we only
perform this computation for the datum’s model
m(d), and then we rescale that value based on the
number of data in that datum’s model|Dm(d)|. The
second term in that equation is rescaled by theto-
tal number of data in all models combined. The
stochastic partial derivatives with respect toθ∗ be-
come:
∂Lhier-stoch(D; θ)

∂θ∗,i
= (6)

1

|Dm(d)|

(
θ∗,i − θm(d),i

σ2
m

)
−

1∑
m∈M

|Dm|

(
θ∗,i

σ2
∗

)

where for conciseness we omitµ under the as-
sumption that it equals zero.

An equally correct formulation for the partial
derivative of θ∗ is to simply rescale Equation 3
by the total number of data in all models. Early
experiments found that both versions gave simi-
lar performance, but the latter was significantly
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Figure 3: A linear-chain CRF(a) labels each word,
whereas a semi-CRF(b) labels entire entities. A
semi-CRF can be represented as a tree(c), wherei
indicates an internal node for an entity.

slower to compute because it required summing
over the parameter vectors for all base models in-
stead of just the vector for the datum’s model.

When using a batch size larger than one, you
compute the given functions for each datum in the
batch and then add them together.

4 Base Models

Our hierarchical joint model is composed of three
separate models, one for just named entity recog-
nition, one for just parsing, and one for joint pars-
ing and named entity recognition. In this section
we will review each of these models individually.

4.1 Semi-CRF for Named Entity Recognition

For our named entity recognition model we use a
semi-CRF (Sarawagi and Cohen, 2004; Andrew,
2006). Semi-CRFs are very similar to the more
popular linear-chain CRFs, but with several key
advantages. Semi-CRFssegment and label the
text simultaneously, whereas a linear-chain CRF
will only label each word, and segmentation is im-
plied by the labels assigned to the words. When

doing named entity recognition, a semi-CRF will
have one node for each entity, unlike a regular
CRF which will have one node for each word.2

See Figure 3a-b for an example of a semi-CRF
and a linear-chain CRF over the same sentence.
Note that the entityHilary Clinton has one node
in the semi-CRF representation, but two nodes in
the linear-chain CRF. Because different segmen-
tations have different model structures in a semi-
CRF, one has to consider all possible structures
(segmentations) as well as all possible labelings.
It is common practice to limit segment length in
order to speed up inference, as this allows for the
use of a modified version of the forward-backward
algorithm. When segment length is not restricted,
the inference procedure is the same as that used
in parsing (Finkel and Manning, 2009c).3 In this
work we do not enforce a length restriction, and
directly utilize the fact that the model can be trans-
formed into a parsing model. Figure 3c shows a
parse tree representation of a semi-CRF.

While a linear-chain CRF allows features over
adjacent words, a semi-CRF allows them over ad-
jacent segments. This means that a semi-CRF can
utilize all features used by a linear-chain CRF, and
can also utilize features over entire segments, such
asFirst National Bank of New York City, instead of
just adjacent words likeFirst National and Bank
of. Let y be a vector representing the labeling for
an entire sentence.yi encodes the label of theith
segment, along with the span of words the seg-
ment encompasses. Letθ be the feature weights,
and f(s, yi, yi−1) the feature function over adja-
cent segmentsyi andyi−1 in sentences.4 The log
likelihood of a semi-CRF for a single sentences is
given by:

L(y|s; θ) =
1

Zs

|y|∑

i=1

exp{θ · f(s, yi, yi−1)} (7)

The partition functionZs serves as a normalizer.
It requires summing over the setys of all possible
segmentations and labelings for the sentences:

Zs =
∑

y∈ys

|y|∑

i=1

exp{θ · f(s, yi, yi−1)} (8)

2Both models will have one node per word for non-entity
words.

3While converting a semi-CRF into a parser results in
much slower inference than a linear-chain CRF, it is still sig-
nificantly faster than a treebank parser due to the reduced
number of labels.

4There can also be features over single entities, but these
can be encoded in the feature function over adjacent entities,
so for notational simplicity we do not include an additional
term for them.
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Figure 4: An example of a sentence jointly annotated with parse and named entity information. Named
entities correspond to nodes in the tree, and the parse labelis augmented with the named entity informa-
tion.

Because we use a tree representation, it is
easy to ensure that the features used in the NER
model are identical to those in the joint parsing
and named entity model, because the joint model
(which we will discuss in Section 4.3) is also
based on a tree representation where each entity
corresponds to a single node in the tree.

4.2 CRF-CFG for Parsing

Our parsing model is the discriminatively trained,
conditional random field-based context-free gram-
mar parser (CRF-CFG) of (Finkel et al., 2008).
The relationship between a CRF-CFG and a PCFG
is analogous to the relationship between a linear-
chain CRF and a hidden Markov model (HMM)
for modeling sequence data. Lett be a com-
plete parse tree for sentences, and each lo-
cal subtreer ∈ t encodes both the rule from
the grammar, and the span and split informa-
tion (e.g NP(7,9) → JJ(7,8)NN(8,9) which covers
the last two words in Figure 1). The feature func-
tion f(r, s) computes the features, which are de-
fined over a local subtreer and the words of the
sentence. Letθ be the vector of feature weights.
The log-likelihood of treet over sentences is:

L(t|s; θ) =
1

Zs

∑

r∈t

exp{θ · f(r, s)} (9)

To compute the partition functionZs, which
serves to normalize the function, we must sum
over τ(s), the set of all possible parse trees for
sentences. The partition function is given by:

Zs =
∑

t′∈τ(s)

∑

r∈t′

exp{θ · f(r, s)}

We also need to compute the partial derivatives
which are used during optimization. Letfi(r, s)

be the value of featurei for subtreer over sen-
tences, and letEθ[fi|s] be the expected value of
featurei in sentences, based on the current model
parametersθ. The partial derivatives ofθ are then
given by

∂L

∂θi

=
∑

(t,s)∈D

((∑

r∈t

fi(r, s)

)
− Eθ[fi|s]

)

(10)
Just like with a linear-chain CRF, this equation
will be zero when the feature expectations in the
model equal the feature values in the training data.

A variant of the inside-outside algorithm is used
to efficiently compute the likelihood and partial
derivatives. See (Finkel et al., 2008) for details.

4.3 Joint Model of Parsing and Named Entity
Recognition

Our base joint model for parsing and named entity
recognition is the same as (Finkel and Manning,
2009b), which is also based on the discriminative
parser discussed in the previous section. The parse
tree structure is augmented with named entity in-
formation; see Figure 4 for an example. The fea-
tures in the joint model are designed in a man-
ner that fits well with the hierarchical joint model:
some are over just the parse structure, some are
over just the named entities, and some are over the
joint structure. The joint model shares the NER
and parse features with the respective single-task
models. Features over the joint structure only ap-
pear in the joint model, and their weights are only
indirectly influenced by the singly-annotated data.

In the parsing model, the grammar consists of
only the rules observed in the training data. In the
joint model, the grammar is augmented with ad-



Training Testing
Range # Sent. Range # Sent.

ABC 0–55 1195 56–69 199
MNB 0–17 509 18–25 245
NBC 0–29 589 30–39 149
PRI 0–89 1704 90–112 394
VOA 0–198 1508 199–264 385

Table 1: Training and test set sizes for the five
datasets in sentences. The file ranges refer to
the numbers within the names of the original
OntoNotes files.

ditional joint rules which are composed by adding
named entity information to existing parse rules.
Because the grammars are based on the observed
data, and the two models have different data, they
will have somewhat different grammars. In our hi-
erarchical joint model, we added all observed rules
from the joint data (stripped of named entity infor-
mation) to the parse-only grammar, and we added
all observed rules from the parse-only data to the
grammar for the joint model, and augmented them
with named entity information in the same manner
as the rules observed in the joint data.

Earlier we said that the NER-only model uses
identical named entity features as the joint model
(and similarly for the parse-only model), but this
is not quite true. They use identicalfeature tem-
plates, such asword, but different realizations
of those features will occur with the different
datasets. For instance, the NER-only model may
haveword=Nigel as a feature, but becauseNigel
never occurs in the joint data, that feature is never
manifested and no weight is learned for it. We deal
with this similarly to how we dealt with the gram-
mar: if a named entity feature occurs in either the
joint data or the NER-only data, then both mod-
els will learn a weight for that feature. We do the
same thing for the parse features. This modeling
decision gives the joint model access to potentially
useful features to which it would not have had ac-
cess if it were not part of the hierarchical model.5

5 Experiments and Discussion

We compared our hierarchical joint model to a reg-
ular (non-hierarchical) joint model, and to parse-
only and NER-only models. Our baseline ex-
periments were modeled after those in (Finkel
and Manning, 2009b), and while our results were
not identical (we updated to a newer release of
the data), we had similar results and found the
same general trends with respect to how the joint

5In the non-hierarchical setting, you could include those
features in the optimization, but, because there would be no
evidence about them, their weights would be zero due to reg-
ularization.

model improved on the single models. We used
OntoNotes 3.0 (Hovy et al., 2006), and made the
same data modifications as (Finkel and Manning,
2009b) to ensure consistency between the parsing
and named entity annotations. Table 2 has our
complete set of results, and Table 1 gives the num-
ber of training and test sentences. For each sec-
tion of the data (ABC, MNB, NBC, PRI, VOA)
we ran experiments training a linear-chain CRF
on only the named entity information, a CRF-CFG
parser on only the parse information, a joint parser
and named entity recognizer, and our hierarchi-
cal model. For the hierarchical model, we used
the CNN portion of the data (5093 sentences) for
the extra named entity data (and ignored the parse
trees) and the remaining portions combined for the
extra parse data (and ignored the named entity an-
notations). We usedσ∗ = 1.0 and σm = 0.1,
which were chosen based on early experiments on
development data. Small changes toσm do not
appear to have much influence, but larger changes
do. We similarly decided how many iterations to
run stochastic gradient descent for (20) based on
early development data experiments. We did not
run this experiment on the CNN portion of the
data, because the CNN data was already being
used as the extra NER data.

As Table 2 shows, the hierarchical model did
substantially better than the joint model overall,
which is not surprising given the extra data to
which it had access. Looking at the smaller cor-
pora (NBC and MNB) we see the largest gains,
with both parse and NER performance improving
by about8% F1. ABC saw about a6% gain on
both tasks, and VOA saw a1% gain on both. Our
one negative result is in the PRI portion: parsing
improves slightly, but NER performance decreases
by almost2%. The same experiment on develop-
ment data resulted in a performance increase, so
we are not sure why we saw a decrease here. One
general trend, which is not surprising, is that the
hierarchical model helps the smaller datasets more
than the large ones. The source of this is two-
fold: lower baselines are generally easier to im-
prove upon, and the larger corpora had less singly-
annotated data to provide improvements, because
it was composed of the remaining, smaller, sec-
tions of OntoNotes. We found it interesting that
the gains tended to be similar on both tasks for all
datasets, and believe this fact is due to our use of
roughly the same amount of singly-annotated data
for both parsing and NER.

One possible conflating factor in these experi-
ments is that of domain drift. While we tried to



Parse Labeled Bracketing Named Entities
Precision Recall F1 Precision Recall F1

ABC Just Parse 69.8% 69.9% 69.8% –
Just NER – 77.0% 75.1% 76.0%
Baseline Joint 70.2% 70.5% 70.3% 79.2% 76.5% 77.8%
Hierarchical Joint 75.5% 74.4% 74.9% 85.1% 82.7% 83.9%

MNB Just Parse 61.7% 65.5% 63.6% –
Just NER – 69.6% 49.0% 57.5%
Baseline Joint 61.7% 66.2% 63.9% 70.9% 63.5% 67.0%
Hierarchical Joint 72.6% 70.2% 71.4% 74.4% 75.5% 74.9%

NBC Just Parse 59.9% 63.9% 61.8% –
Just NER – 63.9% 60.9% 62.4%
Baseline Joint 59.3% 64.2% 61.6% 68.9% 62.8% 65.7%
Hierarchical Joint 70.4% 69.9% 70.2% 72.9% 74.0% 73.4%

PRI Just Parse 78.6% 77.0% 76.9% –
Just NER – 81.3% 77.8% 79.5%
Baseline Joint 78.0% 78.6% 78.3% 86.3% 86.0%86.2%
Hierarchical Joint 79.2% 78.5% 78.8% 84.2% 85.5% 84.8%

VOA Just Parse 77.5% 76.5% 77.0% –
Just NER – 85.2% 80.3% 82.7%
Baseline Joint 77.2% 77.8% 77.5% 87.5% 86.7% 87.1%
Hierarchical Joint 79.8% 77.8% 78.8% 87.7% 88.9% 88.3%

Table 2: Full parse and NER results for the six datasets. Parse trees were evaluated using evalB, and
named entities were scored using micro-averaged F-measure(conlleval).

get the most similar annotated data available – data
which was annotated by the same annotators, and
all of which is broadcast news – these are still dif-
ferent domains. While this is likely to have a nega-
tive effect on results, we also believe this scenario
to be a more realistic than if it were to also be data
drawn from the exact same distribution.

6 Conclusion
In this paper we presented a novel method for
improving joint modeling using additional data
which has not been labeled with the entire joint
structure. While conventional wisdom says that
adding more training data should always improve
performance, this work is the first to our knowl-
edge to incorporate singly-annotated data into a
joint model, thereby providing a method for this
additional data, which cannot be directly used by
the non-hierarchical joint model, to help improve
joint modeling performance. We built single-task
models for the non-jointly labeled data, designing
those single-task models so that they have features
in common with the joint model, and then linked
all of the different single-task and joint models
via a hierarchical prior. We performed experi-
ments on joint parsing and named entity recogni-
tion, and found that our hierarchical joint model
substantially outperformed a joint model which

was trained on only the jointly annotated data.

Future directions for this work include automat-
ically learning the variances,σm andσ∗ in the hi-
erarchical model, so that the degree of information
sharing between the models is optimized based on
the training data available. We are also interested
in ways to modify the objective function to place
more emphasis on learning a good joint model, in-
stead of equally weighting the learning of the joint
and single-task models.
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