
Exploring the Boundaries: Gene and Protein Identification in Biomedical Text

Shipra Dingare,* Jenny Finkel,** Christopher Manning,**
Malvina Nissim,* Beatrice Alex,* Claire Grover*

*Institute for Communicating and Collaborative Systems�
sdingar1 � mnissim � v1balex � grover � @inf.ed.ac.uk

University of Edinburgh, United Kingdom

**Department of Computer Science�
jrfinkel � manning � @cs.stanford.edu
Stanford University, United States

Abstract
We present a maximum-entropy based system incorporating a diverse set of features for identifying genes and proteins in biomedical
abstracts. This system was entered in the BioCreative comparative evaluation and achieved a precision of 0.83 and recall of 0.84 in the
“open” evaluation and a precision of 0.78 and recall of 0.85 in the “closed” evaluation. Central contributions are rich use of features
derived from the training data at multiple levels of granularity, a focus on correctly identifying entity boundaries, and the innovative use
of several external knowledge sources including full MEDLINE abstracts and web searches.

1. Introduction
The explosion of information in the biomedical do-

main and particularly in genetics has highlighted the need
for automated information extraction techniques. MED-
LINE, the primary research database serving the biomed-
ical community, currently contains over 12 million ab-
stracts, with 60,000 new abstracts appearing each month.
There is also an impressive number of molecular biological
databases covering an array of information on genes, pro-
teins, nucleotide and amino acid sequences, both generally
(GenBank, Swiss-Prot) and for particular species (FlyBase,
Mouse Genome Informatics, WormBase, Saccharomyces
Genome Database), and each containing entries numbering
from the thousands to the millions and multiplying rapidly.
All of these resources are curated by hand by expert an-
notators at enormous expense and the amount of informa-
tion often prohibits updating previously annotated material
to conform to changing annotation guidelines. This situ-
ation has naturally led to interest in automated techniques
for problems such as topic classification, word sense disam-
biguation, and tokenization in the biomedical domain (cf.
MEDLINE’s Indexing Initiative).

In this paper we focus on the particular problem of
Named Entity Recognition (NER) which requires the iden-
tification of names corresponding to shallow semantic cat-
egories; as posed by the BioCreative evaluation, this task
required participants to identify gene and protein names
in medical abstracts. NER is an important component for
more complex information extraction tasks such as auto-
matic extraction of protein-protein interaction information.
We present a system based on a maximum-entropy se-
quence tagger which achieved state-of-the-art performance
in the BioCreative comparative evaluation. Below, we first
describe the system (Section 2), then present its perfor-
mance on the BioCreative Task 1A evaluation and devel-
opment data along with an analysis of errors (Section 3),
and finally close with a more general discussion of the task
and our conclusions (Section 4).

2. System Description

Our entry was a machine learning system using a dis-
criminatively trained conditional Markov model sequence
tagger, implemented in Java and based on the tagger used
in (Klein et al., 2003). The system essentially uses a lo-
gistic regression model (with quadratic regularization) to
classify each word, overlaid with a Viterbi-style algorithm
to find the best sequence of classifications; such models
are also known as maximum entropy Markov models or
MEMMs. Maximum entropy models have been used with
much success in NER tasks and are known for their abil-
ity to incorporate a large number of overlapping features.
We devoted most of our efforts to finding useful features.
The final system makes exhaustive use of clues within the
sentence, as well as using various external resources, and
pre- and post-processing. In the following sections we de-
scribe our system in greater detail. In section 2.1. we out-
line our preprocessing phase. In sections 2.2. and 2.3. we
detail our full feature set, starting with the features used
in the closed section of the BioCreative evaluation (where
gazetteers were not allowed) and moving on to the features
used in the open section (where all external resources were
allowed). In section 2.4. we give implementation details
of our training procedure. Finally, in sections 2.5. and 2.6.
we describe tagging and a postprocessing phase aimed at
improving boundary detection.

2.1. Preprocessing

During both training and testing we used the tokeniza-
tion supplied by the task organizers. We normalized names
of months and days of the week to lowercase, and mapped
the British spellings of a few common medical terms to
their American versions. We looked up all tokens in the
gazetteers and in the English dictionary CELEX and calcu-
lated the frequency of each token in the corpus. We then
identified abbreviations and long forms using the method
of (Schwartz and Hearst, 2003). We tagged the data for



POS using the TnT POS tagger1 (Brants, 2000) trained on
the GENIA corpus which provides a gold standard for POS
tags in biomedical text.2 Finally, we removed the B-I dis-
tinction and mapped all entities to I-, finding that this gave
us maximal performance.

2.2. Features – Closed Section

The features described here were used in both the closed
and open sections. The basic feature types were words,
character substrings, word shapes, POS tags, abbreviations
and the NE tags assigned to surrounding words. Character
substrings refer to all substrings of the current word, up to
a length of 6 characters. Thus the word “bio” would have
features b, bi, bio, bio , bio , io , o , bio, bi, io, b, i, o.
Word shapes refer to mappings of each word to a simpli-
fied representation that encodes attributes such as its length
and whether it contains capitalization, numerals, greek let-
ters, and so on. Thus “Varicella-zoster” would become Xx-
xxx, “mRNA” would become xXXX, and “CPA1” would be-
come XXXd. A feature encoding whether each word was
an abbreviation, a long form, or neither was assigned to
each token. Lastly, a parentheses-matching feature that sig-
nalled when one parenthesis was classified differently from
its pair was added in an effort to eliminate errors where
the tagger classified matching parentheses differently. All
of these basic feature types were then used singly or com-
bined in various ways to create new features. Word identity
features were also used disjunctively on left and right con-
texts. The resulting feature set is summarized in Table 1
and comprises all of the features used in the closed section.
Beyond standard word and POS tag features, character sub-
string and word shape features were central players in the
system of (Klein et al., 2003). We borrowed disjunctive
word features from (Kazama et al., 2002), and introduced
abbreviation and parentheses matching features to model
key problems in this textual domain.

2.3. Features – Open Section

The features described here were used in the “open”
entry and comprise various external resources including
gazetteers, a web querying technique, the full abstracts cor-
responding to the sentences in training and test sets, the
GENIA corpus, and the ABGene NE/POS tagger. The ba-
sic assumption behind and motivation for using external re-
sources is that there are instances in the data where contex-
tual clues do not provide sufficient evidence for confident
classification. In such cases external resources may bridge
the gap, either in the form of word lists known to refer to
genes (gazetteers) or through examination of other contexts
in which the same token appears and the exploitation of
more indicative contexts (as with web-querying and use of
surrounding text such as abstracts).

All external resources are vulnerable to incompleteness,
noise, and ambiguity. Gazetteers are arguably subject to

1The TnT POS tagger is an HMM-based tagger; perhaps due
to greater robustness, we found that it outperformed the maximum
entropy POS tagger that was available to us.

2Testing showed that a GENIA-trained POS tagger performed
much better than one trained on Wall Street Journal text, presum-
ably due to the idiosyncratic nature of biomedical text.
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Paren-Matching A feature that signals when one
parentheses in a pair has been
assigned a different tag than the
other in a window of 4 words

Table 1: Full Feature Set Used In Closed Section

all three and yet have been used successfully in a number
of systems. Because of its size (Google currently searches
over 4,285M web pages3), the web is the least vulnerable
to incompleteness but is highly vulnerable to noise. Nev-
ertheless, the web has been used to good effect in various
NLP tasks (see (Keller and Lapata, 2003) for an overview)
from machine translation (Grefenstette, 1999) to anaphora
resolution (Modjeska et al., 2003). Abstracts do not contain
indicative contexts as frequently because they are so small;
however their information is least vulnerable to ambiguity
because a token used repeatedly within a text is likely used
with the same meaning each time. Information on a word’s
classification elsewhere in the same text has been success-
fully used in a number of NER systems (cf. (Mikheev et al.,
1999) and (Curran and Clark, 2003)). By incorporating all
of these resources as features in a probabilistic system, we
aimed to make use of their information while taking into
account their reliability.

Our gazetteer was compiled from lists of gene names
from biomedical sites on the Web (such as Locus Link)

3Estimate from www.google.com, 26.02.2004



as well as from the Gene Ontology and the data provided
for Tasks 1A and 1B. The gazetteer was cleaned by remov-
ing single character entries (“A”, “1”), entries containing
only digits or symbols and digits (“37”, “3-1”), and entries
containing only words that could be found in the English
dictionary CELEX (“abnormal”, “brain tumour”). The fi-
nal gazetteer contained 1,731,581 entries. As stated above,
gazetteer lookup was performed for each token in the pre-
processing stage. Lookup was case-insensitive but punc-
tuation was required to match exactly. For multiple word
entries in the gazetteer we required all words in the entry to
match. We also experimented with fuzzy-matching where
each gazetteer entry was converted into a regular expres-
sion; however this matching led to inferior results and was
therefore not used.

In using the web we built several contexts indicative of
gene entities including “X gene”, “X mutation” or “X an-
tagonist”. For each entity X identified as a gene by an ini-
tial run of the tagger, we submitted the instantiation of each
pattern to the Web using the Google API and obtained the
number of hits. If at least one of the patterns returned more
than zero hits, the string was assigned a ‘web’ value for the
Web feature. The classifier was then run again; this time
incorporating the web feature. Using web-querying only
on likely candidates for genes as identified by an initial run
of the tagger was more efficient than using it on all words.
Note however that this approach uses the web only to elim-
inate false positives and therefore does not improve recall.
In other work (Finkel et al., 2004) we have explored using
the web with low-frequency words to improve both recall
and precision.

To use the abstracts, we automatically located the full
Medline abstract from which each BioCreative sentence
was taken by searching Medline for the sentence using cgi
scripts. (In a practical application this would be unnec-
essary since one would almost always have the full ab-
stract and not a single sentence.) We incorporated addi-
tional information by tagging the abstract and then adding
to words in the corresponding sentence a feature that indi-
cated whether the word was tagged as a gene in the abstract.
We found that this feature was only helpful when combined
with other information such as frequency and whether the
word had appeared in the English dictionary CELEX. Pre-
sumably this was due to common words for which the ab-
stract feature was misleading; the fact that the word “gene”
was tagged as a gene in the phrase “CPA1 gene” does not
indicate that it is a gene in the phrase “a gene”.

The final two external resources that we incorporated
were the ABGene tagger (Tanabe and Wilbur, 2002) and
the GENIA corpus (Ohta et al., 2002). We found that while
the ABGene tagger used alone achieved only a modest f-
score of 0.62 on the BioCreative development data, use
of ABGene NE output as a feature nevertheless slightly
improved our recall and overall f-score. We assume that
this is because its use allowed our classifier to partially
exploit the various gazetteers and lists of good and bad
terms incorporated into the ABGene system (see (Tanabe
and Wilbur, 2002)), thereby gaining additional knowledge
of gene names independent of context. We also sought
to incorporate the GENIA corpus of NE-annotated MED-

LINE abstracts but found this difficult because it used an
entirely different tag set than the BioCreative data and the
mapping between them was unclear. We gained a small im-
provement by training the C&C tagger (Curran and Clark,
2003) on the full NE tag set of the GENIA corpus (consist-
ing of 37 biomedical NEs including “cell type” and “pro-
tein molecule”), then using this tagger to tag both training
and test data and using its output as a feature in our final
tagger.4

2.4. Training

As previously stated maximum entropy systems allow
incorporation of large numbers of diverse features; how-
ever, parameter estimation for large models can be time-
consuming. We found that a particularly large number of
features was necessary for high performance in the biomed-
ical domain, and improved on our initial parameter estima-
tion method (conjugate gradient descent as in (Klein et al.,
2003)) by implementing a quasi-Newton optimization pro-
cedure. Quasi-Newton or limited memory variable metric
methods have been shown to be faster than other algorithms
by a factor of 7 to 1 (Malouf, 2002). Our final system was
trained on the combined training and development data of
10,000 sentences and 262,139 words and employed approx-
imately 1.25 million features; using quasi-Newton it trained
in less than two hours. Arguably, in a real-world applica-
tion the time taken for training is irrelevant because it is a
one-time cost. However, in tuning a system training must
be fast enough to allow experimentation with various con-
figurations.

2.5. Tagging

Tagging used a Viterbi-style algorithm with a beam size
of 30. At each step candidates whose previous four assign-
ments contained sequences of NE tags that had not been
seen in the training data were rejected. Tagging was quick;
the evaluation data of 5000 sentences was tagged in approx-
imately one minute.

2.6. Postprocessing

We found that many of our errors stemmed from
gene boundaries and addressed this issue in several ways.
Boundary errors were often due to mismatched parenthe-
ses; the parentheses-matching feature described in sec-
tion 2.3. did not eliminate these errors due to instances in
the training data which contained mismatched parentheses.
We therefore used grep to remove genes containing mis-
matched parentheses from our results. We also found that
we obtained different gene boundaries when we ran the
classifier forwards versus backwards (reversing the order
of the words) and obtained a significant improvement in re-
call at the expense of precision by simply combining the
two sets of results. This new, larger set of genes contained
instances where one gene was a substring of another gene.
In those instances we kept only the shorter gene. We found
that this postprocessing was highly valuable and added ap-
proximately 1% to our f-score. It was used in both the open
and closed sections.

4The C&C tagger is another maximum entropy sequence tag-
ger; it was used for pragmatic reasons related to memory use.



3. Results and Analysis

Precision Recall F-Score

Open 0.813 0.861 0.836
Closed 0.784 0.852 0.817

Table 2: Results on Cross-Validated Training/Dev Data

Precision Recall F-Score

Open 0.828 0.835 0.832
Closed 0.792 0.854 0.822

Table 3: Results on Evaluation Data

Precision Recall F-Score
�

F
Abbreviations 0.813 0.860 0.836 -0.05%
Abgene 0.810 0.861 0.834 -0.18%
Abstract 0.811 0.855 0.832 -0.39%
Gazette 0.807 0.857 0.831 -0.51%
Genia 0.806 0.857 0.831 -0.55%
Substrings 0.814 0.852 0.833 -0.37%
POS ��� ������� �	�
� 0.814 0.860 0.836 -0.03%
Google Web 0.807 0.864 0.835 -0.17%
Word Shape 0.815 0.862 0.838 +0.13%
Zero Order 0.741 0.799 0.770 -6.66%
First Order 0.818 0.853 0.835 -0.15%
Second Order 0.814 0.861 0.837 +0.06%
Third Order 0.814 0.863 0.837 +0.07%

Table 4: Results on Cross-Validated Training and Develop-
ment Data With One Feature Removed At a Time

The tables above show the performance of both the
“open” and “closed” versions of the system on the devel-
opment and evaluation data as well as lesion studies show-
ing the individual contribution of feature classes to the
overall performance. Surprisingly, the “closed” version of
the system achieves performance only 1% lower than the
“open” version on the evaluation data (2% on the develop-
ment data). We had expected more value from extra data
sources, but it may well be that they are difficult to ex-
ploit effectively because of subtly different decisions about
what does and does not count as a gene. However, it is
also worth noting that a 1-2% improvement is relatively
significant; as the performance of the classifier gradually
improved the improvements became progressively smaller
so that at times features were incorporated which added
only a tenth of a point. Also surprising was that remov-
ing word shape features actually increased our F-Score by
0.13%. The “zero order” and “first-order” experiments re-
fer to how far back the classifier can see the NE tags as-
signed to previous words during sequence search. Thus
a zero-order model can only see the classification of the
current word, while a first-order model can see the classi-
fication assigned to the previous word (but not the words
before). Removing second and third order features also im-
proved our result marginally.

3.1. Sources of Error

A number of false positives (FPs) occurred when the
entity tagged by the classifier was a description of a gene
rather than a gene name, as with “homologue gene”. FPs
also occurred with several strings that were composed of
characters and digits or sequences of capitalised letters, or
that included symbols and punctuation. This occurred fre-
quently with measures, such as “kat/L” (katal per litre) and
acronyms for non-gene entities. Acronym ambiguity was
a related source of error. The abbreviation “HAT”, for in-
stance, could stand for the gene name “histone acetyltrans-
ferase” but actually referred to “hepatic artery thrombosis”
in the specific context.

False negatives (FNs) were frequently caused by gene
names that had not been encountered in the training data,
so that the classifier did not have information about them
and contextual clues were insufficient. FNs also occurred
in some coordinated NPs where the modifier was attached
to only one of the phrases but modified all of the coordi-
nated members. Abbreviations, expansions, and names in
parentheses were also frequent causes of FNs.

The single largest source of error was mistaken bound-
aries (37% of FP and 39% of FN). In most cases, the clas-
sifier identified one correct and one incorrect boundary (i.e.
either the beginning or the end). It often included left or
right context as part of the entity which was not contained in
the gold standard. In several instances, the classifier split a
string into separate entities which in fact referred to a single
entity, or tagged separate entities as a single one. Tokeni-
sation errors sometimes triggered boundary errors, as with
“PGS-2 . CAT reporter gene” where the classifier only rec-
ognized “CAT reporter” as a gene. Because many abbrevia-
tions were not genes and because the precision and recall of
the gazetteer were fairly low, we believe that both abbrevia-
tion and gazetteer features helped more in identifying gene
boundaries than in identifying genes.

Some of our errors were due to errors in the evaluation
data. In example (1) below which appeared in the evalu-
ation data, our system annotated “nuclear factor Y” as a
gene while the gold standard annotated only “nuclear fac-
tor”; we were penalized for both a FP and a FN. We are not
biologists but this appears to be an error and is inconsis-
tent with (2) which appeared in the training data. Examples
(3) and (4) also appear to be misannotated; a quick web
search shows that SGOT (our system’s FP) in (3) is a well-
known enzyme, while the GaAs/(Al,Ga)As heterojunctions
(our system’s FN) in (4) are found in semiconductors. Even
in cases where our error in the evaluation data was in fact
an error, it could not infrequently be traced to a similar er-
ror in the training data. In example 5 we annotated “hu-
man cyclin-dependent kinase” and were penalized for a FP;
however, our annotation mirrors the pattern of examples 6
and 7 which appeared in the training data.

(1) ...both PC12 and C6 cell nuclear extracts were re-
cruited by the CCAAT-box as a complex containing
nuclear factor Y.

(2) The sequence-specific interaction of nuclear factor
HiNF-D with this key proximal promoter element



False Positives Classifier (CL) Gold Standard (GS)
General Words homolog gene -
Measures kat/L -
Possible Errors in GS [ssDNA-] and [RNA-binding protein] ssDNA- and [RNA-binding protein]
False Negatives Classifier (CL) Gold Standard (GS)
Coordination [YAP2 uORF1] and uORF2 [YAP2 uORF1] and [uORF2]
Missing Expansion zinc-finger protein ([THZif-1]) [zinc-finger protein] ([THZif-1])
Boundary Errors Classifier (CL) Gold Standard (GS)
GS NE contains CL NE(s) AP-1 complexes high mobility AP-1 complexes

USH1C USH1C disease gene
partner of [Rac] [partner of Rac]

CL NE contains GS NE(s) regulator virF virF
Wnt pathway Wnt

CL and GS Overlap Serum [Fibrin Degradation Products] [Serum Fibrin] Degradation Products

Table 5: Examples of FPs, FNs and boundary errors. In some of the examples square brackets are used to indicate the
differences between the classifier’s output and the annotation in the gold standard.

of the H4-FO108 gene is cell cycle regulated in nor-
mal diploid cells

(3) Nitrogen balance was compared, and metabolic
complications were monitored by evaluating BUN,
serum creatinine, creatinine clearance, serum CO2,
SGOT, SGPT, serum LDH, and serum alkaline
phosphatase.

(4) Envelope-function matching conditions for
GaAs/(Al,Ga)As heterojunctions.

(5) Structure of the gene encoding the human cyclin-
dependent kinase inhibitor p18

(6) She improved with a combination of benzodi-
azepines and the acetylcholinesterase inhibitor
physostigmine.

(7) ...which targets the cyclin-dependent kinase (Cdk)
inhibitor Sic1p...

3.2. Directions for Improvement

Figure 1: Performance of NER system on development data

The learning curve in Figure 1 suggests that we can ex-
pect only very limited improvement from the availability of
additional training data, given the current task and feature
set. Rather we must explore other avenues, including bet-
ter exploitation of existing features and resources, develop-
ment of additional features, incorporation of additional ex-

ternal resources, or experimentation with other algorithms
and strategies for approaching the task.

One obvious improvement of our current system would
be the incorporation of protein names into our gazetteer.
Due to ambiguity in the guidelines we were unaware that
protein names were to be recognized and incorporated only
gene names into our gazetteers.

Secondly, more careful attention to coordination may
improve results. This could involve parsing or less sophis-
ticated treatment of coordinations. One must however con-
sider that NER is generally supposed to be an initial step
feeding into more complex analysis such as information ex-
traction and parsing. Using parsing to improve NER there-
fore reverses the presumed order of processing and is prob-
lematic from the perspective of a complete system.

Thirdly , boundary errors might be addressed more ef-
fectively with a more sophisticated post-processing stage.
Considering only the problem of segmentation of NEs,
Collins (2002) applies reranking to candidate structures
generated from a maximum-entropy tagger and achieves a
17.7% relative reduction in error rate. Reranking was used
to utilize features that describe the full NE identified by the
tagger, such as its first and last words and attributes thereof,
and whether all words between a set of quotes were given
the same tag (reminiscent of the parentheses problems in
our data). Such features cannot be encoded in a standard
sequence tagger.

Another possible avenue would be automatic addition
of conjunctions of current features (Della Pietra et al.,
1997). A number of the features listed in Table 1 as well as
the features used to incorporate external resources are rel-
atively unintuitive conjunctions of other features that were
chosen by lengthy trial and error processes. Feature induc-
tion might suggest useful feature conjunctions that we have
overlooked and reduce the cost of incorporating additional
resources. The use of automatic feature induction would
also detract from the criticism that if 25 person-weeks are
necessary to develop features for a supposedly machine
learning system, could one not develop a system of hand-
crafted rules in the same time?

Finally, improvements in the annotation of data used
for both training and evaluation may be the single best



source of improvement. We note that the quality of data
for BioCreative was overall quite good and the organizers’
innovation of providing alternate correct boundaries for a
given named entity was instrumental in reducing spurious
errors due to debatable boundaries. However, as noted in
the previous section a significant proportion of errors coud
be attributed to errors in the annotated data, and the fact that
no clear annotation guidelines were provided in a domain
as complex as molecular biology would suggest that there
is room for improvement.

4. Conclusions
We have presented in detail a machine learning system

for identifying genes and proteins in text and described its
feature set comprising both contextual clues and external
resources. We have also presented its performance on the
BioCreative development and evaluation data, analyzed its
sources of error, and identified possible avenues for im-
provement.

Many of our features were focused on increasing the
correct identification of entity boundaries. This is partly
an artifact of the scoring metric: using an f-score of ex-
act match precision and recall means that one is penalized
twice, both for a FP and a FN, in cases of an incorrect
boundary identification. One scores better in such cases
if one suggests no entity.5 But it equally reflects that find-
ing correct entity boundaries in the biomedical domain is
an extremely hard task, whereas in many cases it is quite
trivial for people or place names in English – capitalization
giving sufficient clues.

The final performance of the tagger at 0.83 f-score re-
mains far below the best results reported for the most well-
researched NER task of PERSON, LOCATION, and OR-
GANIZATION entities in newswire texts. Using the set of
features designed for that task in CoNLL 2003 (Sang and
De Meulder, 2003), our system achieves an f-score of 0.76
on the BioCreative development data, a dramatic ten points
lower than its f-score of 0.86 on the CoNLL newswire data.
Despite the massive size of the final feature set (almost
twice as many features as used for CoNLL), its final perfor-
mance of 0.83 is still below its performance on the CoNLL
data (and far below the 0.89 f-score of the top-performing
system in the CoNLL task), although the BIOCREATIVE
task involved only one distinction. The discrepancy in per-
formance is a striking illustration of the greater difficulty of
NER in the biomedical domain.

It is worth comparing these performance figures with
levels of interannotator agreement in the biomedical do-
main. Interannotator agreement effectively provides a ceil-
ing on the performance that can be expected from a system
by measuring how well a human annotator performs on a

5The CoNLL task used the same metric, but note that the “mid-
nineties” results commonly remembered from MUC NER com-
petitions reflect an easier metric where partial credit was given
for cases of incorrect boundary identification. We evaluated our
BioCreative result of 83.2 with the MUC scorer and scored 85.62.
Note also that the BioCreative evaluation had a facility for anno-
tators to be able to specify alternate correct answers, which ame-
liorated this problem by allowing as correct matches of several
lengths in places where the annotators thought it appropriate.

task. While agreement for the MUC entities was measured
at 97%6, a number of results have measured agreement for
biomedical NEs to be substantially lower, with f-scores in
the range of 0.87 (Hirschman, 2003) to 0.89 (Demetriou
and Gaizauskas, 2003). With interannotator agreement so
low, it appears that we cannot currently expect to improve
system performance more than a few points. This suggests
that more clarity in what should be annotated (or perhaps
just when a variety of answers of different extent should
be counted as correct) is needed. It also may suggest that
performance of 83% or improvement of just a few points is
sufficient for the technology to be practically applicable.
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