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Abstract

Distant supervision for relation extraction
(RE) – gathering training data by aligning a
database of facts with text – is an efficient ap-
proach to scale RE to thousands of different
relations. However, this introduces a challeng-
ing learning scenario where the relation ex-
pressed by a pair of entities found in a sen-
tence is unknown. For example, a sentence
containing Balzac and France may express
BornIn or Died, an unknown relation, or no re-
lation at all. Because of this, traditional super-
vised learning, which assumes that each ex-
ample is explicitly mapped to a label, is not
appropriate. We propose a novel approach
to multi-instance multi-label learning for RE,
which jointly models all the instances of a pair
of entities in text and all their labels using
a graphical model with latent variables. Our
model performs competitively on two difficult
domains.

1 Introduction
Information extraction (IE), defined as the task of
extracting structured information (e.g., events, bi-
nary relations, etc.) from free text, has received re-
newed interest in the “big data” era, when petabytes
of natural-language text containing thousands of dif-
ferent structure types are readily available. How-
ever, traditional supervised methods are unlikely to
scale in this context, as training data is either lim-
ited or nonexistent for most of these structures. One
of the most promising approaches to IE that ad-
dresses this limitation is distant supervision, which
generates training data automatically by aligning a

DB =

(
BornIn(Barack Obama,United States)

EmployedBy(Barack Obama,United States)

)
Sentence Latent Label
Barack Obama is the 44th and current President
of the United States.

EmployedBy

Obama was born in the United States just as he
has always said.

BornIn

United States President Barack Obama meets
with Chinese Vice President Xi Jinping today.

EmployedBy

Obama ran for the United States Senate in 2004. –

Figure 1: Training sentences generated through distant
supervision for a database containing two facts.

database of facts with text (Craven and Kumlien,
1999; Bunescu and Mooney, 2007).

In this paper we focus on distant supervision for
relation extraction (RE), a subproblem of IE that ad-
dresses the extraction of labeled relations between
two named entities. Figure 1 shows a simple exam-
ple for a RE domain with two labels. Distant super-
vision introduces two modeling challenges, which
we highlight in the table. The first challenge is
that some training examples obtained through this
heuristic are not valid, e.g., the last sentence in Fig-
ure 1 is not a correct example for any of the known
labels for the tuple. The percentage of such false
positives can be quite high. For example, Riedel
et al. (2010) report up to 31% of false positives in
a corpus that matches Freebase relations with New
York Times articles. The second challenge is that
the same pair of entities may have multiple labels
and it is unclear which label is instantiated by any
textual mention of the given tuple. For example, in
Figure 1, the tuple (Barack Obama, United States)
has two valid labels: BornIn and EmployedBy, each
(latently) instantiated in different sentences. In the
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Figure 2: Overview of multi-instance multi-label learn-
ing. To contrast, in traditional supervised learning there
is one instance and one label per object. For relation ex-
traction the object is a tuple of two named entities. Each
mention of this tuple in text generates a different instance.

Riedel corpus, 7.5% of the entity tuples in the train-
ing partition have more than one label.

We summarize this multi-instance multi-label
(MIML) learning problem in Figure 2. In this pa-
per we propose a novel graphical model, which we
called MIML-RE, that targets MIML learning for re-
lation extraction. Our work makes the following
contributions:

(a) To our knowledge, MIML-RE is the first RE ap-
proach that jointly models both multiple instances
(by modeling the latent labels assigned to instances)
and multiple labels (by providing a simple method to
capture dependencies between labels). For example,
our model learns that certain labels tend to be gener-
ated jointly while others cannot be jointly assigned
to the same tuple.

(b) We show that MIML-RE performs competitively
on two difficult domains.

2 Related Work
Distant supervision for IE was introduced by Craven
and Kumlien (1999), who focused on the ex-
traction of binary relations between proteins and
cells/tissues/diseases/drugs using the Yeast Protein
Database as a source of distant supervision. Since
then, the approach grew in popularity (Bunescu and
Mooney, 2007; Bellare and McCallum, 2007; Wu
and Weld, 2007; Mintz et al., 2009; Riedel et al.,
2010; Hoffmann et al., 2011; Nguyen and Moschitti,
2011; Sun et al., 2011; Surdeanu et al., 2011a).
However, most of these approaches make one or
more approximations in learning. For example,
most proposals heuristically transform distant super-
vision to traditional supervised learning (i.e., single-
instance single-label) (Bellare and McCallum, 2007;
Wu and Weld, 2007; Mintz et al., 2009; Nguyen
and Moschitti, 2011; Sun et al., 2011; Surdeanu

et al., 2011a). Bunescu and Mooney (2007) and
Riedel et al. (2010) model distant supervision for
relation extraction as a multi-instance single-label
problem, which allows multiple mentions for the
same tuple but disallows more than one label per ob-
ject. Our work is closest to Hoffmann et al. (2011).
They address the same problem we do (binary rela-
tion extraction) with a MIML model, but they make
two approximations. First, they use a deterministic
model that aggregates latent instance labels into a
set of labels for the corresponding tuple by OR-ing
the classification results. We use instead an object-
level classifier that is trained jointly with the clas-
sifier that assigns latent labels to instances and can
capture dependencies between labels. Second, they
use a Perceptron-style additive parameter update ap-
proach, whereas we train in a Bayesian framework.
We show in Section 5 that these approximations gen-
erally have a negative impact on performance.

MIML learning has been used in fields other than
natural language processing. For example, Zhou
and Zhang (2007) use MIML for scene classifica-
tion. In this problem, each image may be assigned
multiple labels corresponding to the different scenes
captured. Furthermore, each image contains a set of
patches, which forms the bag of instances assigned
to the given object (image). Zhou and Zhang pro-
pose two algorithms that reduce the MIML problem
to a more traditional supervised learning task. In
one algorithm, for example, they convert the task to
a multi-instance single-label problem by creating a
separate bag for each label. Due to this, the pro-
posed approach cannot model inter-label dependen-
cies. Moreover, the authors make a series of approx-
imations, e.g., they assume that each instance in a
bag shares the bag’s overall label. We instead model
all these issues explicitly in our approach.

In general, our approach belongs to the category
of models that learn in the presence of incomplete or
incorrect labels. There has been interest among ma-
chine learning researchers in the general problem of
noisy data, especially in the area of instance-based
learning. Brodley and Friedl (1999) summarize
past approaches and present a simple, all-purpose
method to filter out incorrect data before training.
While potentially applicable to our problem, this ap-
proach is completely general and cannot incorporate
our domain-specific knowledge about how the noisy



data is generated.

3 Distant Supervision for Relation Extraction
Here we focus on distant supervision for the ex-
traction of relations between two entities. We de-
fine a relation as the construct r(e1, e2), where r is
the relation name, e.g., BornIn in Figure 1, and e1
and e2 are two entity names, e.g., Barack Obama
and United States. Note that there are entity tu-
ples (e1, e2) that participate in multiple relations,
r1, . . . , ri. In other words, the tuple (e1, e2) is the
object illustrated in Figure 2 and the different rela-
tion names are the labels. We define an entity men-
tion as a sequence of text tokens that matches the
corresponding entity name in some text, and relation
mention (for a given relation r(e1, e2)) as a pair of
entity mentions of e1 and e2 in the same sentence.
Relation mentions thus correspond to the instances
in Figure 2.1 As the latter definition indicates, we
focus on the extraction of relations expressed in a
single sentence. Furthermore, we assume that entity
mentions are extracted by a different process, such
as a named entity recognizer.

We define the task of relation extraction as a func-
tion that takes as input a document collection (C), a
set of entity mentions extracted from C (E), a set of
known relation labels (L) and an extraction model,
and outputs a set of relations (R) such that any of the
relations extracted is supported by at least one sen-
tence in C. To train the extraction model, we use a
database of relations (D) that are instantiated at least
once in C. Using distant supervision, D is aligned
with sentences in C, producing relation mentions for
all relations in D.

4 Model
Our model assumes that each relation mention in-
volving an entity pair has exactly one label, but al-
lows the pair to exhibit multiple labels across differ-
ent mentions. Since we do not know the actual re-
lation label of a mention in the distantly supervised
setting, we model it using a latent variable z that
can take one of the k pre-specified relation labels
as well as an additional NIL label, if no relation is
expressed by the corresponding mention. We model
the multiple relation labels an entity pair can assume

1For this reason, we use relation mention and relation in-
stance interchangeably in this paper.

. . .

. . . . . .

. . .

Figure 3: MIML model plate diagram. We unrolled the
y plate to emphasize that it is a collection of binary clas-
sifiers (one per relation label), whereas the z classifier is
multi-class. Each z and yj classifier has an additional
prior parameter, which is omitted here for clarity.

using a multi-label classifier that takes as input the
latent relation types of the all the mentions involving
that pair. The two-layer hierarchical model is shown
graphically in Figure 3, and is described more for-
mally below. The model includes one multi-class
classifier (for z) and a set of binary classifiers (for
each yj). The z classifier assigns latent labels from
L to individual relation mentions or NIL if no rela-
tion is expressed by the mention. Each yj classifier
decides if relation j holds for the given entity tu-
ple, using the mention-level classifications as input.
Specifically, in the figure:

• n is the number of distinct entity tuples in D;

• Mi is the set of mentions for the ith entity pair;

• x is a sentence and z is the latent relation clas-
sification for that sentence;

• wz is the weight vector for the multi-class
mention-level classifier;

• k is the number of known relation labels in L;

• yj is the top-level classification decision for the
entity pair as to whether the jth relation holds;

• wj is the weight vector for the binary top-level
classifier for the jth relation.

Additionally, we define Pi (Ni) as the set of all
known positive (negative) relation labels for the ith
entity tuple. In this paper, we construct Ni as L\Pi,
but, in general, other scenarios are possible. For
example, both Sun et al. (2011) and Surdeanu et



al. (2011a) proposed models where Ni for the ith tu-
ple (e1, e2) is defined as: {rj | rj(e1, ek) ∈ D, ek 6=
e2, rj /∈ Pi}, which is a subset of L\Pi. That is, en-
tity e2 is considered a negative example for relation
rj (in the context of entity e1) only if rj exists in the
training data with a different value.

The addition of the object-level layer (for y) is an
important contribution of this work. This layer can
capture information that cannot be modeled by the
mention-level classifier. For example, it can learn
that two relation labels (e.g., BornIn and SpouseOf)
cannot be generated jointly for the same entity tu-
ple. So, if the z classifier outputs both these la-
bels for different mentions of the same tuple, the y
layer can cancel one of them. Furthermore, the y
classifiers can learn when two labels tend to appear
jointly, e.g., CapitalOf and Contained between two
locations, and use this occurrence as positive rein-
forcement for these labels. We discuss the features
that implement these ideas in Section 5.

4.1 Training

We train the proposed model using hard discrimina-
tive Expectation Maximization (EM). In the Expec-
tation (E) step we assign latent mention labels us-
ing the current model (i.e., the mention and relation
level classifiers). In the Maximization (M) step we
retrain the model to maximize the log likelihood of
the data using the current latent assignments.

In the equations that follow, we refer to
w1, . . . ,wk collectively as wy for compactness.
The vector zi contains the latent mention-level clas-
sifications for the ith entity pair, while yi represents
the corresponding set of gold-standard labels (that
is, y(r)i = 1 if r ∈ Pi, and y

(r)
i = 0 for r ∈ Ni.)

Using these notations, the log-likelihood of the data
is given by:

LL(wy,wz) =

n∑
i=1

log p(yi|xi,wy,wz)

=

n∑
i=1

log
∑
zi

p(yi, zi|xi,wy,wz)

The joint probability in the inner summation can be
broken up into simpler parts:

p(yi, zi|xi,wy,wz)

= p(zi|xi,wz)p(yi|zi,wy)

=
∏

m∈Mi

p(z
(m)
i |x(m)

i ,wz)
∏

r∈Pi∪Ni

p(y
(r)
i |zi,w

(r)
y )

where the last step follows from conditional inde-
pendence. Thus the log-likelihood for this problem
is not convex (it includes a sum of products). How-
ever, we can still use EM, but the optimization fo-
cuses on maximizing the lower bound of the log-
likelihood, i.e., we maximize the above joint proba-
bility for each entity pair in the database. Rewriting
this probability in log space, we obtain:

log p(yi, zi|xi,wy,wz) (1)

=
∑

m∈Mi

log p(z
(m)
i |x(m)

i ,wz)+∑
r∈Pi∪Ni

log p(y
(r)
i |zi,w

(r)
y )

The algorithm proceeds as follows.
E-step: In this step we infer the mention-level
classifications zi for each entity tuple, given all its
mentions, the gold labels yi, and current model, i.e.,
wz and wy weights. Formally, we seek to find:

zi
∗ = argmax

z
p(z|yi,xi,wy,wz)

However it is computationally intractable to con-
sider all vectors z as there is an exponential num-
ber of possible assignments, so we approximate and
consider each mention separately. Concretely,

p(z
(m)
i |yi,xi,wy,wz)

∝ p(yi, z
(m)
i |xi,wy,wz)

≈ p(z
(m)
i |x(m)

i ,wz)p(yi|z′i,wy)

= p(z
(m)
i |x(m)

i ,wz)
∏

r∈Pi∪Ni

p(y
(r)
i |z

′
i,w

(r)
y )

where z′i contains the previously inferred mention
labels for group i, with the exception of compo-
nent m whose label is replaced by z

(m)
i . So for

i = 1, . . . , n, and for each m ∈Mi we calculate:

z
(m)∗
i =argmax

z
p(z|x(m)

i ,wz)× (2)∏
r∈Pi∪Ni

p(y
(r)
i |z

′
i,w

(r)
y )



Intuitively, the above equation indicates that men-
tion labels are chosen to maximize: (a) the prob-
abilities assigned by the mention-level model; (b)
the probability that the correct relation labels are as-
signed to the corresponding tuple; and (c) the prob-
ability that the labels known to be incorrect are not
assigned to the tuple. For example, if a particular
mention label receives a high mention-level proba-
bility but it is known to be a negative label for that
tuple, it will receive a low overall score.

M-step: In this step we find wy,wz that maxi-
mize the lower bound of the log-likelihood, i.e., the
probability in equation (1), given the current assign-
ments for zi. From equation (1) it is clear that this
can be maximized separately with respect to wy and
wz. Intuitively, this step amounts to learning the
weights for the mention-level classifier (wz) and the
weights for each of the k top-level classifiers (wy).
The updates are given by:

w∗z = argmax
w

n∑
i=1

∑
m∈Mi

log p(z
(m)∗
i |x(m)

i ,w) (3)

w
(r)∗
y = argmax

w

∑
1≤i≤n s.t. r∈Pi∪Ni

log p(y
(r)
i |z

∗
i ,w) (4)

Note that these are standard updates for logistic re-
gression. We obtained these weights using k + 1
logistic classifiers: one multi-class classifier for wz

and k binary classifiers for each relation label r ∈ L.
We implemented all using the L2-regularized logis-
tic regression from the publicly-downloadable Stan-
ford CoreNLP package.2 The main difference be-
tween the classifiers is how features are generated:
the mention-level classifier computes its features
based on xi, whereas the relation-level classifiers
generate features based on the current assignments
for zi and the corresponding relation label r. We
discuss the actual features used in our experiments
in Section 5.

4.2 Inference
Given an entity tuple, we obtain its relation labels as
follows. We first classify its mentions:

z
(m)∗
i = argmax

z
p(z|x(m)

i ,wz) (5)

2nlp.stanford.edu/software/corenlp.shtml

then decide on the final relation labels using the top-
level classifiers:

y
(r)∗
i = arg max

y∈{0,1}
p(y|z∗i ,w

(r)
y ) (6)

4.3 Implementation Details

We discuss next several details that are crucial for
the correct implementation of the above model.

Initialization: Since EM is not guaranteed to con-
verge at the global maximum of the observed data
likelihood, it is important to provide it with good
starting values. In our context, the initial values are
labels assigned to zi, which are required to compute
equation (2) in the first iteration (z′i). We generate
these values using a local logistic regression classi-
fier that uses the same features as the mention-level
classifier in the joint model but treats each relation
mention independently. We train this classifier using
“traditional” distant supervision: for each relation in
the databaseD we assume that all the corresponding
mentions are positive examples for the correspond-
ing label (Mintz et al., 2009). Note that this heuris-
tic repeats relation mentions with different labels for
the tuples that participate in multiple relations. For
example, all the relation mentions in Figure 1 will
yield datums with both the EmployedBy and BornIn
labels. Despite this limitation, we found that this is
a better initialization heuristic than random assign-
ment.

For the second part of equation (2), we initial-
ize the relation-level classifier with a model that
replicates the at least one heuristic of Hoffmann et
al. (2011). Each w

(r)
y model has a single feature with

a high positive weight that is triggered when label r
is assigned to any of the mentions in z∗i .

Avoiding overfitting: A naı̈ve implementation of
our approach leads to an unrealistic training scenario
where the z classifier generates predictions (in equa-
tion (2)) for the same datums it has seen in training
in the previous iteration. To avoid this overfitting
problem we used cross validation: we divided the
training tuples in K distinct folds and trained K dif-
ferent mention-level classifiers. Each classifier out-
puts p(z|x(m)

i ,wz) for tuples in a given fold during
the E-step (equation (2)) and is trained (equation (3))
using tuples from all other folds.



At testing time, we compute p(z|x(m)
i ,wz) in

equation (5) as the average of the probabilities of
the above set of mention classifiers:

p(z|x(m)
i ,wz) =

∑K
j=1 p(z|x

(m)
i ,wj

z)

K

where wj
z are the weights of the mention classifier

responsible for fold j. We found that this simple
bagging model performs slightly better in practice
(a couple of tenths of a percent) than training a sin-
gle mention classifier on the latent mention labels
generated in the last training iteration.

Inference during training: During the inference
process in the E-step, the algorithm incrementally
“flips” mention labels based on equation (2), for
each group of mentions Mi. Thus, z′i changes as the
algorithm progresses, which may impact the label
assigned to the remaining mentions in that group. To
avoid any potential bias introduced by the arbitrary
order of mentions as seen in the data, we randomize
each group Mi before we inspect its mentions.

5 Experimental Results

5.1 Data
We evaluate our algorithm on two corpora. The first
was developed by Riedel et al. (2010) by aligning
Freebase3 relations with the New York Times (NYT)
corpus. They used the Stanford named entity recog-
nizer (Finkel et al., 2005) to find entity mentions in
text and constructed relation mentions only between
entity mentions in the same sentence.

Riedel et al. (2010) observes that evaluating on
this corpus underestimates true extraction accuracy
because Freebase is incomplete. Thus, some re-
lations extracted during testing will be incorrectly
marked as wrong, simply because Freebase has no
information on them. To mitigate this issue, Riedel
et al. (2010) and Hoffman et al. (2011) perform a
second evaluation where they compute the accuracy
of labels assigned to a set of relation mentions that
they manually annotated. To avoid any potential an-
notation biases, we instead evaluate on a second cor-
pus that has comprehensive annotations generated
by experts for all test relations.

We constructed this second dataset using mainly
resources distributed for the 2010 and 2011 KBP

3freebase.com

shared tasks (Ji et al., 2010; Ji et al., 2011). We gen-
erated training relations from the knowledge base
provided by the task organizers, which is a subset
of the English Wikipedia infoboxes from a 2008
snapshot. Similarly to the corpus of Riedel et al.,
these infoboxes contain open-domain relations be-
tween named entities, but with a different focus.
For example, more than half of the relations in
the evaluation data are alternate names of organi-
zations or persons (e.g., org:alternate names) or re-
lations associated with employment and member-
ship (e.g., per:employee of) (Ji et al., 2011). We
aligned these relations against a document collec-
tion that merges two distinct sources: (a) the col-
lection provided by the shared task, which contains
approximately 1.5 million documents from a vari-
ety of sources, including newswire, blogs and tele-
phone conversation transcripts; and (b) a complete
snapshot of the English Wikipedia from June 2010.
During training, for each entity tuple (e1, e2), we
retrieved up to 50 sentences that contain both en-
tity mentions.4 We used Stanford’s CoreNLP pack-
age to find entity mentions in text and, similarly to
Riedel et al. (2010), we construct relation mention
candidates only between entity mentions in the same
sentence. We analyzed a set of over 2,000 relation
mentions and we found that 39% of the mentions
where e1 is an organization name and 36% of men-
tions where e1 is a person name do not express the
corresponding relation.

At evaluation time, the KBP shared task requires
the extraction of all relations r(e1, e2) given a query
that contains only the first entity e1. To accommo-
date this setup, we adjusted our sentence extraction
component to use just e1 as the retrieval query and
we kept up to 50 sentences that contain a mention
of the input entity for each evaluation query. For
tuning and testing we used the 200 queries from the
2010 and 2011 evaluations. We randomly selected
40 queries for development and used the remaining
160 for the formal evaluation.

To address the large number of negative examples
in training, Riedel et al. subsampled them randomly
with a retention probability of 10%. For the KBP
corpus, we followed the same strategy, but we used

4Sentences were ranked using the similarity between their
parent document and the query that concatenates the two entity
names. We used the default Lucene similarity measure.



# of gold # of gold % of gold entity tuples % of gold entity tuples % of mentions that
relations relations with more than one label with multiple mentions in text do not express # of relation labels

in training in testing in training in training their relation
Riedel 4,700 1,950 7.5% 46.4% up to 31% 51
KBP 183,062 3,334 2.8% 65.1% up to 39% 41

Table 1: Statistics about the two corpora used in this paper. Some of the numbers for the Riedel dataset is from (Riedel
et al., 2010; Hoffmann et al., 2011).

a subsampling probability of 5% because this led to
the best results in development for all models.

Table 1 provides additional statistics about the
two corpora. The table indicates that having mul-
tiple mentions for an entity tuple is a very common
phenomenon in both corpora, and that having mul-
tiple labels per tuple is more common in the Riedel
dataset than KBP (7.5% vs. 2.8%).

5.2 Features

Our model requires two sets of features: one for the
mention classifier (z) and one for the relation clas-
sifier (y). In the Riedel dataset, we used the same
features as Riedel et al. (2010) and Hoffmann et
al. (2011) for the mention classifier. In the KBP
dataset, we used a feature set that was developed in
our previous work (Surdeanu et al., 2011b). These
features can be grouped in three classes: (a) features
that model the two entities, such as their head words;
(b) features that model the syntactic context of the
relation mention, such as the dependency path be-
tween the two entity mentions; and (c) features that
model the surface context, such as the sequence of
part of speech tags between the two entity mentions.
We used these features for all the models evaluated
on the KBP dataset.5

For the relation-level classifier, we developed two
feature groups. The first models Hoffmann et al.’s
at least one heuristic using a single feature, which
is set to true if at least one mention in zi has the la-
bel r, which is modeled by the current relation clas-
sifier. The second group models the dependencies
between relation labels. This is implemented by a
set of |L| − 1 features, where feature j is instan-
tiated whenever the label modeled (r) is predicted
jointly with another label rj (rj ∈ L, rj 6= r) in zi.
These features learn both positive and negative re-
inforcements between labels. For example, if labels

5To avoid an excessive number of features in the KBP exper-
iments, we removed features seen less than five times in train-
ing.

r1 and r2 tend to be generated jointly, the feature for
the corresponding dependency will receive a posi-
tive weight in the models for r1 and r2. Similarly, if
r1 and r2 cannot be generated jointly, the model will
assign a negative weight to feature 2 in r1’s classi-
fier and to feature 1 in r2’s classifier. Note that this
feature is asymmetric, i.e., feature 1 in r2’s classi-
fier may have a different value than feature 2 in r1’s
classifier, depending on the accuracy of the individ-
ual predictions for r1 and r2.

5.3 Baselines
We compare our approach against three models:

Mintz++ – This is the model used to initialize the
mention-level classifier in our model. As discussed
in Section 4.3, this model follows the “traditional”
distant supervision heuristic, similarly to (Mintz et
al., 2009). However, our implementation has several
advantages over the original model: (a) we model
each relation mention independently, whereas Mintz
et al. collapsed all the mentions of the same entity
tuple into a single datum; (b) we allow multi-label
outputs for a given entity tuple at prediction time
by OR-ing the predictions for the individual rela-
tion mentions corresponding to the tuple (similarly
to (Hoffmann et al., 2011))6; and (c) we use the
simple bagging strategy described in Section 4.3 to
combine multiple models. Empirically, we observed
that these changes yield a significant improvement
over the original proposal. For this reason, we con-
sider this model a strong baseline on its own.

Riedel – This is the “at-least-once” model reported
in (Riedel et al., 2010), which had the best perfor-
mance in that work. This approach models the task
as a multi-instance single-label problem. Note that
this is the only model shown here that does not allow
multi-label outputs for an entity tuple.

6We also allow multiple labels per tuple at training time,
in which case we replicate the corresponding datum for each
label. However, this did not improve performance significantly
compared to selecting a single label per datum during training.



Hoffmann – This is the “MultiR” model, which per-
formed the best in (Hoffmann et al., 2011). This
models RE as a MIML problem, but learns using
a Perceptron algorithm and uses a deterministic “at
least one” decision instead of a relation classifier.
We used Hoffman’s publicly released code7 for the
experiments on the Riedel dataset and our own im-
plementation for the KBP experiments.8

5.4 Results

We tuned all models using three-fold cross valida-
tion for the Riedel dataset and using the develop-
ment queries for the KBP dataset. MIML-RE has
two parameters that require tuning: the number of
EM epochs (T ) and the number of folds for the men-
tion classifiers (K).9 The values obtained after tun-
ing are T = 15,K = 5 for the Riedel dataset and
T = 8,K = 3 for KBP. Similarly, we tuned the
number of epochs for the Hoffmann model on the
KBP dataset, obtaining an optimal value of 20.

On the Riedel dataset we evaluate all models us-
ing standard precision and recall measures. For the
KBP evaluation we used the official KBP scorer,10

with two changes: (a) we score with the parame-
ter anydoc set to true, which configures the scorer
to accept relation mentions as correct regardless of
their supporting document; and (b) we score only
on the subset of gold relations that have at least one
mention in our sentences. The first decision is neces-
sary because the gold KBP answers contain support-
ing documents only from the corpus provided by the
organizers but we retrieve candidate answers from
multiple collections. The second is required because
the focus of this work is not on sentence retrieval but
on RE, which should be evaluated in isolation.11

Similarly to previous work, we report preci-
sion/recall curves in Figure 4. We evaluate two
variants of MIML-RE: one that includes all the
features for the y model, and another (MIML-RE

7cs.washington.edu/homes/raphaelh/mr/
8The decision to reimplement the Hoffmann model was a

practical one, driven by incompatibilities between their imple-
mentation and our KBP framework.

9We could also tune the prior parameters for both our model
and Mintz++, but we found in early experiments that the default
value of 1 yields the best scores for all priors.

10nlp.cs.qc.cuny.edu/kbp/2011/scoring.html
11Due to these changes, the scores reported in this paper are

not directly comparable with the shared task scores.

At-Least-One) which has only the at least one
feature. For all the Bayesian models implemented
here, we sorted the predicted relations by the noisy-
or score of the top predictions for their mentions.
Formally, we rank a relation r predicted for group i,
i.e., r ∈ y∗i , using:

noisyOri(r) = 1−
∏

m∈Mi

(1− s
(m)
i (r))

where s
(m)
i (r) = p(r|x(m)

i ,wz) if r = z
(m)∗
i or 0 oth-

erwise. The noisy-or formula performs well for
ranking because it integrates model confidence (the
higher the probabilities, the higher the score) and re-
dundancy (the more mentions are predicted with a
label, the higher that label’s score). Note that the
above ranking score does not include the probability
of the relation classifier (equation (6)) for MIML-RE.
While we use equation (6) to generate y∗i , we found
that the corresponding probabilities are too coarse
to provide a good ranking score. This is caused by
the fact that our relation-level classifier works with
a small number of (noisy) features. Lastly, for our
implementation of the Hoffmann et al. model, we
used their ranking heuristic (sorting predictions by
the maximum extraction score for that relation).

6 Discussion

Figure 4 indicates that MIML-RE generally outper-
forms the current state of the art. In the Riedel
dataset, MIML-RE has higher overall recall than the
Riedel et al. model, and, for the same recall point,
MIML-RE’s precision is between 2 and 15 points
higher. For most of the curve, our model obtains
better precision for the same recall point than the
Hoffmann model, which currently has the best re-
ported results on this dataset. The difference is as
high as 5 precision points around the middle of the
curve. The Hoffmann model performs better close to
the extremities of the curve (low/high recall). Nev-
ertheless, we argue that our model is more stable
than Hoffmann’s: MIML-RE yields a smoother pre-
cision/recall curve, without most of the depressions
seen in the Hoffmann results. In the KBP dataset,
MIML-RE performs consistently better than our im-
plementation of Hoffmann’s model, with higher pre-
cision values for the same recall point, and much
higher overall recall. We believe that these dif-
ferences are caused by our Bayesian framework,
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Figure 4: Results in the Riedel dataset (top) and the KBP dataset (bottom). The Hoffmann scores in the KBP dataset
were generated using our implementation. The other Hoffmann and Riedel results were taken from their papers.

which provides a more formal implementation of the
MIML problem.

Figure 4 also indicates that MIML-RE yields a con-
sistent improvement over Mintz++ (with the excep-
tion of a few points in the low-recall portion of the
KBP curves). The difference in precision for the
same recall point is as high as 25 precision points in
the Riedel dataset and up to 5 points in KBP. Over-
all, the best F1 score of MIML-RE is slightly over 1
point higher than the best F1 score of Mintz++ in
the Riedel dataset and 3 points higher in KBP. Con-
sidering that Mintz++ is a strong baseline and we
evaluate on two challenging domains, we consider
these results proof that the correct modeling of the
MIML scenario is beneficial.

Lastly, Figure 4 shows that MIML-RE outper-
forms its variant without label-dependency fea-
tures (MIML-RE At-Least-One) in the higher-
recall part of the curve in the Riedel dataset. The im-
provement is approximately 1 F1 point throughout
the last segment of the curve. The overall increase
in F1 was found to be significant (p = 0.0296) in a
one-sided, paired t-test over randomly sampled test
data. We see a smaller improvement in KBP (con-
centrated around the middle of the curve), likely be-
cause the number of entity tuples with multiple la-
bels in training is small (see Table 1). Neverthe-
less, this exercise shows that, when dependencies
between labels exist in a dataset, modeling them,
which can be trivially done in MIML-RE, is useful.



P R F1
Hoffmann (our implementation) 48.6 29.8 37.0
Mintz++ 43.8 36.8 40.0
MIML-RE 64.8 31.6 42.6
MIML-RE At-Least-One 56.1 32.5 41.1

Table 2: Results at the highest F1 point in the preci-
sion/recall curve on the dataset that contains groups with
at least 10 mentions.

In a similar vein, we tested the models previ-
ously described on a subset of the Riedel evalua-
tion dataset that only includes groups with at least
10 mentions. This corpus contains approximately
2% of the groups from the original testing partition,
out of which 90 tuples have at least one known label
and 1410 groups serve as negative examples.

For conciseness, we do not include the entire
precision/recall curves for this experiment, but sum-
marize them in Table 2, which lists the performance
peak (highest F1 score) for each of the models
investigated. The table shows that MIML-RE obtains
the highest F1 score overall, 1.5 points higher than
MIML-RE At-Least-One and 2.6 points higher
than Mintz++. More importantly, for approximately
the same recall point, MIML-RE obtains a precision
that is over 8 percentage points higher than that of
MIML-RE At-Least-One. A post-hoc inspection
of the results indicates that, indeed, MIML-RE suc-
cessfully eliminates undesired labels when two
(or more) incompatible labels are jointly assigned
to the same tuple. Take for example the tuple
(Mexico City, Mexico), for which the correct re-
lation is /location/administrative division/country.
MIML-RE At-Least-One incorrectly predicts
the additional /location/location/contains relation,
while MIML-RE does not make this prediction
because it recognizes that these two labels are in-
compatible in general: one location cannot both be
within another location and contain it. Indeed, ex-
amining the weights assigned to label-dependency
features in MIML-RE, we see that the model has
assigned a large negative weight to the depen-
dency feature between /location/location/contains
and /location/administrative division/country
for the /location/location/contains class. We
also observe positive dependencies between la-
bels. For example, MIML-RE learns that the
relations /people/person/place lived and /peo-

ple/person/place of birth tend to co-occur and
assigns a positive weight to this dependency feature
for the corresponding classes.

These results strongly suggest that when all as-
pects of the MIML scenario are present, our model
can successfully capture them and make use of the
additional structure to improve performance.

7 Conclusion

In this paper we showed that distant supervision
for RE, which generates training data by aligning a
database of facts with text, poses a distinct multi-
instance multi-label learning scenario. In this set-
ting, each entity pair to be modeled typically has
multiple instances in the text and may have multiple
labels in the database. This is considerably differ-
ent from traditional supervised learning, where each
instance has a single, explicit label.

We argued that this MIML scenario should be
formally addressed. We proposed, to our knowl-
edge, the first approach that models all aspects of the
MIML setting, i.e., the latent assignment of labels to
instances and dependencies between labels assigned
to the same entity pair.

We evaluated our model on two challenging do-
mains and obtained state-of-the-art results on both.
Our model performs well even when not all aspects
of the MIML scenario are common, and as seen in
the discussion, shows significant improvement when
evaluated on entity pairs with many labels or men-
tions. When all aspects of the MIML scenario are
present, our model is well-equipped to handle them.

The code and data used in the experiments re-
ported in this paper are available at: http://nlp.
stanford.edu/software/mimlre.shtml.
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