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Abstract

Tree-structured recursive neural networks
(TreeRNNs) for sentence meaning have
been successful for many applications, but
it remains an open question whether the
fixed-length representations that they learn
can support tasks as demanding as logi-
cal deduction. We pursue this question
by evaluating whether two such models—
plain TreeRNNs and tree-structured neural
tensor networks (TreeRNTNs)—can cor-
rectly learn to identify logical relation-
ships such as entailment and contradiction
using these representations. In our first set
of experiments, we generate artificial data
from a logical grammar and use it to eval-
uate the models’ ability to learn to handle
basic relational reasoning, recursive struc-
tures, and quantification. We then evaluate
the models on the more natural SICK chal-
lenge data. Both models perform compet-
itively on the SICK data and generalize
well in all three experiments on simulated
data, suggesting that they can learn suit-
able representations for logical inference
in natural language.

1 Introduction

Tree-structured recursive neural network models
(TreeRNNs; Goller and Kuchler 1996; Socher
et al. 2011b) for sentence meaning have been
successful in an array of sophisticated language
tasks, including sentiment analysis (Socher et al.,
2011b; Irsoy and Cardie, 2014), image descrip-
tion (Socher et al., 2014), and paraphrase detection
(Socher et al., 2011a). These results are encourag-
ing for the ability of these models to learn to pro-
duce and use strong semantic representations for
sentences. However, it remains an open question
whether any such fully learned model can achieve

the kind of high-fidelity distributed representa-
tions proposed in recent algebraic work on vector
space modeling (Coecke et al., 2011; Grefenstette,
2013; Hermann et al., 2013; Rocktäschel et al.,
2014), and whether any such model can match the
performance of grammars based in logical forms
in their ability to model core semantic phenom-
ena like quantification, entailment, and contradic-
tion (Warren and Pereira, 1982; Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Liang et al.,
2013).

Recent work on the algebraic approach of Co-
ecke et al. (2011) has yielded rich frameworks for
computing the meanings of fragments of natural
language compositionally from vector or tensor
representations, but has not yet yielded effective
methods for learning these representations from
data in typical machine learning settings. Past ex-
perimental work on reasoning with distributed rep-
resentations have been largely confined to short
phrases (Mitchell and Lapata, 2010; Grefenstette
et al., 2011; Baroni et al., 2012). However, for ro-
bust natural language understanding, it is essential
to model these phenomena in their full generality
on complex linguistic structures.

This paper describes four machine learning ex-
periments that directly evaluate the abilities of
these models to learn representations that sup-
port specific semantic behaviors. These tasks fol-
low the format of natural language inference (also
known as recognizing textual entailment; Dagan
et al. 2006), in which the goal is to determine
the core inferential relationship between two sen-
tences. We introduce a novel NN architecture for
natural language inference which independently
computes vector representations for each of two
sentences using standard TreeRNN or TreeRNTN
(Socher et al., 2013) models, and produces a judg-
ment for the pair using only those representations.
This allows us to gauge the abilities of these two
models to represent all of the necessary semantic



information in the sentence vectors.

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that
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Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

TreeRNTN models are adequate for typical cases
of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimensionN . A learned
composition function maps pairs of them to single
phrase vectors of dimension N , which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the



Name Symbol Set-theoretic definition Example

(strict) entailment x @ y x ⊂ y turtle, reptile
(strict) reverse entailment x A y x ⊃ y reptile, turtle
equivalence x ≡ y x = y couch, sofa
alternation x | y x ∩ y = ∅ ∧ x ∪ y 6= D turtle, warthog
negation x ∧ y x ∩ y = ∅ ∧ x ∪ y = D able, unable
cover x` y x ∩ y 6= ∅ ∧ x ∪ y = D animal, non-turtle
independence x# y (else) turtle, pet

Table 1: The seven relations of MacCartney and Manning (2009)’s logic are defined abstractly on pairs
of sets drawing from the universe D, but can be straightforwardly applied to any pair of natural language
words, phrases, or sentences. The relations are defined so as to be mutually exclusive.

standard NN layer function (1) and those with the
more powerful neural tensor network layer func-
tion (2) proposed in Chen et al. (2013). The non-
linearity f(x) = tanh(x) is applied elementwise
to the output of either layer function.

~yTreeRNN = f(M

[
~x(l)

~x(r)

]
+~b )(1)

~yTreeRNTN = ~yTreeRNN + f(~x(l)TT[1...n]~x(r))(2)

Here, ~x(l) and ~x(r) are the column vector represen-
tations for the left and right children of the node,
and ~y is the node’s output. The TreeRNN concate-
nates them, multiplies them by an N × 2N ma-
trix of learned weights, and adds a bias ~b. The
TreeRNTN adds a learned full rank third-order
tensor T, of dimension N × N × N , modeling
multiplicative interactions between the child vec-
tors. The comparison layer uses the same layer
function as the composition layers (either an NN
layer or an NTN layer) with independently learned
parameters and a separate nonlinearity function.
Rather than use a tanh nonlinearity here, we found
better results with the leaky rectified linear func-
tion (Maas et al., 2013): f(x) = max(x, 0) +
0.01min(x, 0).

Other strong tree-structured models have been
proposed in past work (Socher et al., 2014; Irsoy
and Cardie, 2014; Tai et al., 2015), but we believe
that these two provide a valuable case study, and
that positive results on here are likely to generalize
well to stronger models.

To run the model forward, we assemble the two
tree-structured networks so as to match the struc-
tures provided for each phrase, which are either
included in the source data or given by a parser.
The word vectors are then looked up from the vo-
cabulary embedding matrix V (one of the learned
model parameters), and the composition and com-
parison functions are used to pass information up

the tree and into the classifier. For an objective
function, we use the negative log likelihood of the
correct label with tuned L2 regularization.

We initialize parameters uniformly, using the
range (−0.05, 0.05) for layer parameters and
(−0.01, 0.01) for embeddings, and train the model
using stochastic gradient descent (SGD) with
learning rates computed using AdaDelta (Zeiler,
2012). The classifier feature vector is fixed at
75 dimensions and the dimensions of the recur-
sive layers are tuned manually. Training times on
CPUs vary from hours to days across experiments.
On the experiments which use artificial data, we
report mean results over five fold cross-validation,
where variance across runs is typically no more
than two percentage points. In addition, because
the classes are not necessarily balanced, we report
both accuracy and macroaveraged F1.1 Source
code and generated data can be downloaded from
http://stanford.edu/˜sbowman/.

3 Reasoning about semantic relations

The simplest kinds of deduction in natural logic
involve atomic statements using the relations in
Table 1. For instance, from the relation p1 A p2
between two propositions, one can infer the rela-
tion p2 @ p1 by applying the definitions of the
relations directly. If one is also given the relation
p2 A p3 one can conclude that p1 A p3, by basic
set-theoretic reasoning (transitivity of A). The full
set of sound such inferences on pairs of premise
relations is depicted in Table 2. Though these ba-
sic inferences do not involve compositional sen-
tence representations, any successful reasoning
using compositional representations will rely on
the ability to perform sound inferences of this kind

1We compute macroaveraged F1 as the harmonic mean
of average precision and average recall, both computed for
all classes for which there is test data, setting precision to 0
where it is not defined.

http://stanford.edu/~sbowman/


≡ @ A ∧ | ` #
≡ ≡ @ A ∧ | ` #
@ @ @ · | | · ·
A A · A ` · ` ·
∧ ∧ ` | ≡ A @ #
| | · | @ · @ ·
` ` ` · A A · ·
# # · · # · · ·

Table 2: In §3, we assess our models’ ability to
learn to do inference over pairs of relations using
the rules represented here, which are derived from
the definitions of the relations in Table 1. As an ex-
ample, given that p1 @ p2 and p2 ∧ p3, the entry in
the @ row and the ∧ column lets us conclude that
p1 | p3. Cells containing a dot correspond to situa-
tions for which no valid inference can be drawn.

Train Test

# only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
15d NTN 100 (100) 99.6 (95.5)

Table 3: Performance on the semantic relation ex-
periments. These results and all other results on
artificial data are reported as mean accuracy scores
over five runs followed by mean macroaveraged
F1 scores in parentheses. The “# only” entries
reflect the frequency of the most frequent class.

in order to be able to use unseen relational facts
within larger derivations. Our first experiment
studies how well each model can learn to perform
them them in isolation.

Experiments We begin by creating a world
model on which we will base the statements in
the train and test sets. This takes the form of a
small Boolean structure in which terms denote sets
of entities from a small domain. Fig. 2a depicts
a structure of this form with three entities (a, b,
and c) and eight proposition terms (p1–p8). We
then generate a relational statement for each pair
of terms in the model, as shown in Fig. 2b. We
divide these statements evenly into train and test
sets, and delete the test set examples which can-
not be proven from the train examples, for which
there is not enough information for even an ideal
system to choose a correct label. In each experi-
mental run, we create a model with 80 terms over
a domain of 7 elements, yielding a training set of
3200 examples and a test set of 2960 examples.

We trained models with both the NN and NTN

{a, b, c}

p1, p2
{a, b}

p3
{a, c}

p4
{b, c}

p5, p6
{a} {b}

p7, p8
{c}

{}

(a) Example boolean structure, shown with edges idicat-
ing inclusion. The terms p1–p8 name the sets. Not all
sets have names, and some sets have multiple names, so
that learning ≡ is non-trivial.

Train Test

p1 ≡ p2 p2
∧ p7

p1 A p5 p2 A p5
p4 A p8 p5 ≡ p6
p5 | p7 p7 @ p4
p7

∧ p1 p8 @ p4

(b) A few examples of atomic statements about the
model depicted above. Test statements that are not
provable from the training data shown are crossed out.

Figure 2: Small example structure and data for
learning relation composition.

comparison functions on these data sets.2 In both
cases, the models are implemented as described in
§2, but since the items being compared are single
terms rather than full tree structures, the composi-
tion layer is not used, and the two models are not
recursive. We simply present the models with the
(randomly initialized) embedding vectors for each
of two terms, ensuring that the model has no infor-
mation about the terms being compared except for
the relations between them that appear in training.

Results The results (Table 3) show that NTN is
able to accurately encode the relations between the
terms in the geometric relations between their vec-
tors, and is able to then use that information to re-
cover relations that are not overtly included in the
training data. The NN also generalizes fairly well,
but makes enough errors that it remains an open
question whether it is capable of learning repre-
sentations with these properties. It is not possible
for us to rule out the possibility that different opti-
mization techniques or finer-grained hyperparam-
eter tuning could lead an NN model to succeed.

As an example from our test data, both mod-

2Since this task relies crucially on the learning of a pair of
vectors, no simpler version of our model is a viable baseline.



els correctly labeled p1 @ p3, potentially learning
from the training examples {p1 @ p51, p3 A p51}
or {p1 @ p65, p3 A p65}. On another example
involving comparably frequent relations, the NTN
correctly labeled p6 A p24, likely on the basis of
the training examples {p6`p28, p28 ∧ p24}, while
the NN incorrectly assigned it #.

4 Recursive structure

A successful natural language inference system
must reason about relations not just over famil-
iar atomic symbols, but also over novel structures
built up recursively from these symbols. This sec-
tion shows that our models can learn a composi-
tional semantics over such structures. In our evalu-
ations, we exploit the fact that our logical language
is infinite by testing on strings that are longer and
more complex than any seen in training.

Experiments As in §3, we generate artificial
data from a formal system, but we now replace
the unanalyzed symbols from that experiment
with complex formulae. These formulae repre-
sent a complete classical propositional logic: each
atomic symbol is a variable over the domain {T,
F}, and the only operators are truth-functional
ones. Table 4a defines this logic, and Table 4b
gives some short examples of relational statements
from our data. To compute these relations between
statements, we exhaustively enumerate the sets of
assignments of truth values to propositional vari-
ables that would satisfy each of the statements, and
then we convert the set-theoretic relation between
those assignments into one of the seven relations
in Table 1. As a result, each relational statement
represents a valid theorem of the propositional
logic, and to succeed, the models must learn to re-
produce the behavior of a theorem prover.3

In our experiments, we randomly generate
unique pairs of formulae containing up to 12 in-
stances of logical operators each and compute the
relation that holds for each pair. We discard pairs
in which either statement is either a tautology or a
contradiction, for which the seven relations in Ta-
ble 1 are undefined. The resulting set of formula

3 Socher et al. (2012) show that a matrix-vector TreeRNN
model somewhat similar to our TreeRNTN can learn boolean
logic, a logic where the atomic symbols are simply the values
T and F. While learning the operators of that logic is not triv-
ial, the outputs of each operator can be represented accurately
by a single bit. In the much more demanding task presented
here, the atomic symbols are variables over these values, and
the sentence vectors must thus be able to distinguish up to 22

6

distinct conditions on valuations.

Formula Interpretation

p1, p2, p3, p4, p5, p6 JxK ∈ {T,F}
notϕ T iff JϕK = F
(ϕ and ψ) T iff F /∈ {JϕK, JψK}
(ϕ or ψ) T iff T ∈ {JϕK, JψK}

(a) Well-formed formulae. ϕ and ψ range over all well-
formed formulae, and J·K is the interpretation function
mapping formulae into {T,F}.

not p3 ∧ p3
not not p6 ≡ p6

p3 @ (p3 or p2)
(p1 or (p2 or p4)) A (p2 and not p4)

not (not p1 and not p2) ≡ (p1 or p2)

(b) Short examples of the type of statements used for
training and testing. These are relations between well-
formed formulae, computed in terms of sets of satisfying
interpretation functions J·K.

Table 4: Natural logic relations over sentences of
propositional logic.

pairs is then partitioned into 12 bins according the
number of operators in the larger of the two formu-
lae. We then sample 20% of each bin for a held-
out test set. If we do not implement any constraint
that the two statements being compared are similar
in any way, then the generated data are dominated
by statements in which the two formulae refer to
largely separate subsets of the six variables, which
means that the # relation is almost always cor-
rect. In an effort to balance the distribution of re-
lation labels without departing from the basic task
of modeling propositional logic, we disallow indi-
vidual pairs of statements from referring to more
than four of the six propositional variables.

In order to test the model’s generalization to un-
seen structures, we discard training examples with
more than 4 logical operators, yielding 60k short
training examples, and 21k test examples across
all 12 bins. In addition to the two tree models, we
also train a summing NN baseline which is largely
identical to the TreeRNN, except that instead of
using a learned composition function, it simply
sums the term vectors in each expression to com-
pose them before passing them to the comparison
layer. Unlike the two tree models, this baseline
does not use word order, and is as such guaranteed
to ignore some information that it would need in
order to succeed perfectly.

Results Fig. 3 shows the relationship between
test accuracy and statement size. While the sum-
ming baseline model performed poorly across the



25d$TreeRNTN45d$TreeRNN45d$SumNN #$only

1 0.997436 1 0.912822 0.55641026
2 1 1 0.769072 0.54370894
3 0.998156 0.99208 0.673682 0.55973684
4 0.992548 0.98416 0.569818 0.52244508
5 0.944722 0.958418 0.532628 0.53370183
6 0.917322 0.9446 0.508392 0.53020632
7 0.884528 0.930692 0.484128 0.51434879
8 0.847334 0.91881 0.468566 0.51935768
9 0.815692 0.881188 0.44767 0.48873109
10 0.784936 0.89109 0.440252 0.50021901
11 0.784942 0.857428 0.459278 0.5156038
12 0.757292 0.847528 0.420036 0.50459841
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Figure 3: Results on recursive structure. The ver-
tical dotted line marks the size of the longest train-
ing examples.

board, we found that both recursive models were
able to perform well on unseen small test ex-
amples, with TreeRNN accuracy above 98% and
TreeRNTN accuracy above 99% on formulae be-
low length five, indicating that they learned correct
approximations of the underlying logic. Training
accuracy was 66.6% for the SumNN, 99.4% for
the TreeRNN, and 99.8% for the TreeRNTN.

After the size four training cutoff, performance
gradually decays with expression size for both
tree models, suggesting that the learned approx-
imations were accurate but lossy. Despite the
TreeRNTN’s stronger performance on short sen-
tences, its performance decayed more quickly than
the TreeRNN’s. This suggests to us that it learned
to interpret many specific fixed-size tree structures
directly, allowing it to get away without learning
as robust generalizations about how to compose
terms in the general case. Two factors may have
contributed to the learning of these narrower gen-
eralizations: even with the lower dimension, the
TreeRNTN composition function has about eight
times as many parameters as the TreeRNN, and
the TreeRNTN worked best with weaker L2 reg-
ularization than the TreeRNN (λ = 0.0003 vs.
0.001). However, even in the most complex set
of test examples, the TreeRNTN classifies true ex-
amples of every class but ≡ (which is rare in long
examples, and occurs only once here) correctly the
majority of the time, and the performance of both
models on those examples indicates that both have
learned reasonable approximations of the underly-
ing theorem proving task over recursive structure.

5 Reasoning with quantifiers and
negation

We have seen that recursive models can learn an
approximation of propositional logic. However,
natural languages can express functional meanings
of considerably greater complexity than this. As a
key test of whether our models can capture this
complexity, we now study the degree to which
they are able to develop suitable representations
for the semantics of natural language quantifiers
like most and all as they interact with negation
and lexical entailments. Quantification and nega-
tion are far from the only place in natural language
where complex functional meanings are found, but
they are natural focus, since they have formed a
standard case study in prior formal work on natu-
ral language inference (Icard and Moss, 2013b).

Experiments Our data consist of pairs of sen-
tences generated from a grammar for a sim-
ple English-like artificial language. Each sen-
tence contains a quantifier, a noun which may be
negated, and an intransitive verb which may be
negated. We use the quantifiers some, most, all,
two, and three, and their negations no, not-all,
not-most, less-than-two, and less-than-three, and
also include five nouns, four intransitive verbs,
and the negation symbol not. In order to be able
to define relations between sentences with differ-
ing lexical items, we define the lexical relations
for each noun–noun pair, each verb–verb pair, and
each quantifier–quantifier pair. The grammar then
generates pairs of sentences and calculates the re-
lations between them. For instance, our models
might then see pairs like (3) and (4) in training
and be required to then label (5).

(most turtle) swim | (no turtle) move(3)

(all lizard) reptile @ (some lizard) animal(4)

(most turtle) reptile | (all turtle) (not animal)(5)

In each run, we randomly partition the set of
valid single sentences into train and test, and then
label all of the pairs from within each set to gen-
erate a training set of 27k pairs and a test set of
7k pairs. Because the model doesn’t see the test
sentences at training time, it cannot directly use
the kind of reasoning described in §3 at the sen-
tence level (by treating sentences as unanalyzed
symbols), and must instead jointly learn the word-
level relations and a complete reasoning system
over them for our logic.



Train Test

# only 35.4 (7.5) 35.4 (7.5)
25d SumNN 96.9 (97.7) 93.9 (95.0)
25d TreeRNN 99.6 (99.6) 99.2 (99.3)
25d TreeRNTN 100 (100) 99.7 (99.5)

Table 5: Performance on the quantifier experi-
ments, given as % correct and macroaveraged F1.

We use the same summing baseline as in §4.
The highly consistent sentence structure in this ex-
periment means that this model is not as disadvan-
taged by the lack of word order information as it is
in the previous experiment, but the variable place-
ment of not nonetheless introduces potential un-
certainty in the 58.8% of examples that contain a
sentence with a single token of it.

Results The results (Table 5) show that both tree
models are able to learn to generalize the underly-
ing logic almost perfectly. The baseline summing
model can largely memorize the training data, but
does not generalize as well. We do not find any
consistent pattern in the handful of errors made by
either tree model, and no errors were consistent
across model restarts, suggesting that there is no
fundamental obstacle to learning a perfect model
for this problem.

6 The SICK textual entailment challenge

The specific model architecture that we use is
novel, and though the underlying tree structure ap-
proach has been validated elsewhere, our experi-
ments so far do not guarantee that it viable model
for handling inference over real natural language
data. To investigate our models’ ability to handle
the noisy labels and the diverse range of linguis-
tic structures seen in typical natural language data,
we use the SICK textual entailment challenge cor-
pus (Marelli et al., 2014b). The corpus consists of
about 10k natural language sentence pairs, labeled
with entailment, contradiction, or neutral. At only
a few thousand distinct sentences (many of them
variants on an even smaller set of template sen-
tences), the corpus is not large enough to train a
high quality learned model of general natural lan-
guage, but it is the largest human-labeled entail-
ment corpus that we are aware of, and our results
nonetheless show that tree-structured NN models
can learn to approximate natural logic-style infer-
ence in the real world.

Adapting to this task requires us to make a few

additions to the techniques discussed in §2. In or-
der to better handle rare words, we initialized our
word embeddings using 200 dimensional vectors
trained with GloVe (Pennington et al., 2014) on
data from Wikipedia. Since 200 dimensional vec-
tors are too large to be practical in an TreeRNTN
on a small dataset, a new embedding transforma-
tion layer is needed. Before any embedding is
used as an input to a recursive layer, it is passed
through an additional tanh neural network layer
with the same output dimension as the recursive
layer. This new layer allows the model to choose
which aspects of the 200 dimensional represen-
tations from the unsupervised source it most val-
ues, rather than relying on GloVe—which is has no
knowledge of the task—to do so, as would be the
case were GloVe asked to directly produce vectors
of the lower dimensionality. An identical layer is
added to the SumNN between the word vectors
and the comparison layer.

We also supplemented the SICK training data4

(4500 examples) with 600k examples of approxi-
mate entailment data from the Denotation Graph
project (DG, Hodosh et al. 2014, also used by the
winning SICK submission), a corpus of noisy au-
tomatically labeled entailment examples over im-
age captions, the same genre of text from which
SICK was drawn. We trained a single model on
data from both sources, but used a separate set of
softmax parameters for classifying into the labels
from each source, and forced the model to sample
SICK examples and DG examples about equally
often during training.

We parsed the data from both sources with the
Stanford PCFG Parser v. 3.3.1 (Klein and Man-
ning, 2003). We also found that we were able to
train a working model much more quickly with
an additional technique: we collapse subtrees that
were identical across both sentences in a pair by
replacing them with a single head word. The train-
ing and test data on which we report performance
are collapsed in this way, and both collapsed and
uncollapsed copies of the training data are used in
training. Finally, in order to improve regulariza-
tion on the noisier data, we used dropout (Srivas-
tava et al., 2014) at the input to the comparison
layer (10%) and at the output from the embedding

4We tuned the model using performance on a held out de-
velopment set, but report performance here for a version of
the model trained on both the training and development data
and tested on the 4,928 example SICK test set. We also report
training accuracy on a small sample from each data source.



The patient is being helped by the doctor entailment The doctor is helping the patient (PASSIVE)
A little girl is playing the violin on a beach contradiction There is no girl playing the violin on a beach (NEG)
The yellow dog is drinking water from a bottle contradiction The yellow dog is drinking water from a pot (SUBST)
A woman is breaking two eggs in a bowl neutral A man is mixing a few ingredients in a bowl (MULTIED)
Dough is being spread by a man neutral A woman is slicing meat with a knife (DIFF)

Table 6: Examples of each category used in error analysis from the SICK test data.

neutral 30d 30d 50d
only SumNN TrRNN TrRNTN

DG Train 50.0 68.0 67.0 74.0
SICK Train 56.7 96.6 95.4 97.8
SICK Test 56.7 73.4 74.9 76.9

PASSIVE (4%) 0 76 68 88
NEG (7%) 0 96 100 100
SUBST (24%) 28 72 64 72
MULTIED (39%) 68 61 66 64
DIFF (26%) 96 68 79 96

SHORT (47%) 50.0 73.9 73.5 77.3

Table 7: Classification accuracy, including a cat-
egory breakdown for SICK test data. Categories
are shown with their frequencies.

transform layer (25%).

Results Despite the small amount of high qual-
ity training data available and the lack of resources
for learning lexical relationships, the results (Ta-
ble 7) show that our tree-structured models per-
form competitively on textual entailment, beating
a strong baseline. Neither model reached the per-
formance of the winning system (84.6%), but the
TreeRNTN did exceed that of eight out of 18 sub-
mitted systems, including several which used so-
phisticated hand-engineered features and lexical
resources specific to the version of the entailment
task at hand.

To better understand our results, we manually
annotated a fraction of the SICK test set, using
mutually exclusive categories for passive/active
alternation pairs (PASSIVE), pairs differing only
by the presence of negation (NEG), pairs differing
by a single word or phrase substitution (SUBST),
pairs differing by multiple edits (MULTIED), and
pairs with little or no content word overlap (DIFF).
Examples of each are in Table 6. We annotated
100 random examples to judge the frequency of
each category, and continued selectively annotat-
ing until each category contained at least 25. We
also use the category SHORT for pairs in which
neither sentence contains more than ten words.

The results (Table 7) show that the TreeRNTN
performs especially strongly in the two categories

which pick out specific syntactic configurations,
PASSIVE and NEG, suggesting that that model
has learned to encode the relevant structures well.
It also performs fairly on SUBST, which most
closely parallels the lexical entailment inferences
addressed in §5. In addition, none of the models
perform dramatically better on the SHORT pairs
than on the rest of the data, suggesting that the
performance decay observed in §4 may not impact
models trained on typical natural language text.

It is known that a model can perform well on
SICK (like other natural language inference cor-
pora) without taking advantage of compositional
syntactic or semantic structure (Marelli et al.,
2014a), and our summing baseline model is pow-
erful enough to do this. Our tree models nonethe-
less perform substantially better, and we remain
confident that given sufficient data, it should be
possible for the tree models, and not the summing
model, to learn a truly high-quality solution.

7 Discussion and conclusion

This paper first evaluates two recursive models on
three natural language inference tasks over clean
artificial data, covering the core relational alge-
bra of natural logic with entailment and exclu-
sion, recursive structure, and quantification. We
then show that the same models can learn to per-
form an entailment task on natural language. The
results suggest that TreeRNTNs, and potentially
also TreeRNNs, can learn to faithfully reproduce
logical inference behaviors from reasonably-sized
training sets. These positive results are promising
for the future of learned representation models in
the applied modeling of compositional semantics.

Some questions about the abilities of these mod-
els remain open. Even the TreeRNTN falls short
of perfection in the recursion experiment, with
performance falling off steadily as the size of the
expressions grows. It remains to be seen whether
these deficiencies are limiting in practice, and
whether they can be overcome with stronger mod-
els or learning techniques. In addition, interesting
analytical questions remain about how these mod-



els encode the underlying logics. Neither the un-
derlying logical theories, nor any straightforward
parameter inspection technique provides much in-
sight on this point, but we hope that further exper-
iments may reveal structure in the learned param-
eters or the representations they produce.

Our SICK experiments similarly only begin to
reveal the potential of these models to learn to per-
form complex semantic inferences from corpora,
and there is ample room to develop our under-
standing using new and larger sources of natural
language data. Nonetheless, the rapid progress the
field has made with these models in recent years
provides ample reason to be optimistic that learned
representation models can be trained to meet all
the challenges of natural language semantics.
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