
Large-Scale Language Classification

Writing a Detector for 200 Languages on Twitter

Jordan Cazamias
jaycaz@stanford.edu

Chinmayi Dixit
cdixit@stanford.edu

Martina Marek
martinam@stanford.edu

ABSTRACT
Identifying the language of a text is an important require-
ment for any other processing on written text. While the
focus so far has been mainly on language detection for long
written text, short social media post like tweets are becom-
ing more important. Furthermore, most language classifiers
are designed to work only with dozens of languages. In this
paper, we scale up the language identification to work on
200 languages, and additionally present the results of the
classifier on a twitter data set of 70 languages. The clas-
sifier reached close to 95% when tested on 200 languages,
and the results on the twitter data set are just short of 90%.
Additionally, we made some optimizations to ensure that
classifications are made in a timely manner, suitable for use
on the web.

1. INTRODUCTION
Many automated language detectors exist, but most only

work on the order of dozens of languages and focus on Eu-
ropean languages. Meanwhile, hundreds of languages are
spoken around the world, and many of these, although we
never heard about them, are spoken by millions of people.
As more and more people around the world, especially in
Asia, but also Africa, begin to use social media websites like
Twitter and Facebook, these languages are becoming better
represented online. So, NLP technologies on these sites need
to be equipped to handle the main spoken languages of the
world, not just the most popular few.

We intend to build a language classifier for Twitter, train-
ing on a corpus of approximately 200 languages. Specifically,
this classifier should be able to make a decision between
these languages when given only a single tweet as input.
Working with tweets will present some unique challenges.
Because tweets are only 140 characters long, at most, we
cannot gather statistics that require a large count of words.
Also, dealing with colloquial language and misspellings will
need to be considered.

1.1 Related Work

Chew, Mikami, and Nagano 2011 built a language iden-
tifier that can recognize 182 languages with 94% accuracy
to be able to detect the language of web pages. They used
an improved n-gram model as the features, and a corpus
containing the Universal Declaration of Human Rights and
Biblical texts as their data.
Grefenstette 2014 also used n-gram features as well as short
words to identify the language of a given text. They showed
that, especially on short sentences, n-gram features outper-
form word-based features. Their tests were done on the ECI
corpus from the European Corpus Initiative on 9 different
European languages.
Souter et al. 1994 investigated the effectiveness of three dif-
ferent sets of features, unique character strings, frequent
words and bi- and trigram character features, showing that
trigrams outperform frequent word features and all outper-
form the unique character strings by far.

A challenging task in Language Identification is the clas-
sification of closely related languages. As a result, the DSL
(Discriminating between Similar Languages) shared task was
defined (Zampieri et al. 2014). To tackle the task, differ-
ent groups used mainly linear models and character or word
based features. Porta and Sancho 2014 for example used
a maximum Entropy classifier with word and/or character
based n-gram models of varying size, depending on the lan-
guage group that was to be classified. King, Radev, and
Abney 2014 used a naive Bayes classifier and also experi-
mented with word and character n-grams of varying length,
and reported similar results. A more thorough discussion of
the results can be found in Zampieri et al. 2014.

2. DATASETS
There are many translation text data corpora out there,

but few cover more than several dozen up to a hundred lan-
guages. The ones which do cover the number of languages
we need typically don’t include actual data from Twitter.
To combat this issue, we used several datasets for different
purposes.

2.1 Big Dataset
Our largest dataset covered all the languages we intended

to classify. As a base, it included texts that are trans-
lated into every language; for instance, religious texts like
the Quran, as well as the Universal Declaration of Human
Rights. For the more popular languages, it also included text
from web sources such as Wikipedia articles. The data was

1



strictly in plaintext; however, because much of the text was
extracted from websites, certain metadata such as HTML
tags were included. Efforts were made to clean up this meta-
data as much as possible before training.

2.1.1 Simulated Twitter Data
As most sentences in this data set were much longer than

usual twitter data (which is typically 140 characters long),
we simulated twitter data by breaking up the sentences into
shorter paragraphs of a specific word length. With this,
we were able to evaluate the performance of our classifier
depending on the sentence length of its input.

2.2 Twitter Dataset
We gathered pre-labeled twitter data using : https://

blog.twitter.com/2015/evaluating-language-identification-

performance. This data set covers 70 languages. We had
approximately 80,000+ lines of tweets which we further di-
vided into Train, Test and Dev data (60%, 20%, 10%).

2.3 DSL Shared Task
Discriminating between related languages is a challeng-

ing task, and therefore we used the DSL shared task data
set from 2014 to test our classifiers on their performance on
similar languages (Zampieri et al. 2014). The data set con-
tains 6 groups of closely related languages. We concentrated
our evaluation on the first three groups (Bosnian, Croat-
ian and Serbian; Indonesian and Malaysian; Czech and Slo-
vakian) as those appeared in our first data set, while the last
three groups distinguish between languages spoken in differ-
ent parts of the world (like American and British English).
The data set contains 18,000 sentences for each languages
in the training set, and 2,000 sentences per languages in the
test set.

3. IMPLEMENTATION

3.1 Algorithm

3.1.1 Data Preprocessing

Big Dataset.
To remove the noise from our training/testing data, we

made the following exclusions:

1. Discarded non-alphabet characters such as punctua-
tion, digits, etc.

2. Some files had a lot of noise in them, especially HTML
source code. Languages that had a lot of such noise in
them were therefore often misclassified as each other,
although not being related what so ever (like English
and Chinese). To counteract this, we excluded all
paragraphs that contained < or > in them. This made
sure that any HTML tags would be excluded.

Twitter Dataset.
For twitter, we found that the users were generous in their

use of hashtags, -handles, and URLs. As these did not con-
tribute any value in recognizing the language used, we re-
moved all words with # and in them, as well as strings
formatted like a URL.

3.1.2 Bayes Classifier
For training/classification, we use a Naive Bayes classifier:

p(Lk|x1, x2, · · ·xn) = p(Lk)

n∏
i=1

p(xi|Lk)

During training, it creates a probabilistic model of each
language and can estimate the conditional probabilities of
a feature appearing with a certain class (language). During
training, we retain the most frequent 5000 features to limit
the number of features. During classification, if a feature is
unknown, it gets a minimal probability assigned. As we as-
sume that each language is equally likely to occur, the prior
probabilities p(Lk) are the same and can be omitted.
During classification, the features are extracted from the
sentence and then for each language, the probability of the
sentence being in that language is computed with the pre-
viously computed conditional probabilities. The language

with the highest probability is the output of the classifier L̂k.
To avoid underflow errors, the log probabilities are taken:

L̂k = arg max
Lk

p(Lk|x1, x2, · · ·xn) = arg max
Lk

n∑
i=1

log(p(xi|Lk))

3.1.3 Logistic Regression
In contrast to a Naive Bayes, which as a generative model

models the whole probability distribution, Logistic Regres-
sion is a discriminative model that models the conditional
distribution directly.
Logistic regression takes a set of input data and a set of
labels and maps a relationship between the two. During
training, the algorithm calculates the weights on each of the
features. For each training data point, we have a feature vec-
tor x(i) and an observed class of y(i). The probability of this
class is p if y = 1 or 1−p if y = 0. So, the likelihood estima-
tion using logistic regression will be ifthereareonly2classes:

L =

n∏
i=1

p(xi)
yi(1− p(xi))

(1−yi)

When there are more than 2 classes, the following formula
is used for the conditional probabilities:

Pr(Y = c | X = x) =
eβ0

(c)+x.β(c)∑
c e
β0

(c)+x.β(c)
}

During classification, the probabilities are used to find the
likelihood of each of the classes. The class with the highest
likelihood is chosen in the end.

3.1.4 RNN
Recurrent Neural Networks (RNNs) have made quite a

splash in the Machine learning world thanks to some im-
pressive use cases (http://karpathy.github.io/2015/05/
21/rnn-effectiveness/). In short, RNNs are best suited
for making predictions on input data that is sequential in
nature. Since we are already treating our input as a se-
quence of characters, we reasoned that an RNN could be an
effective tool for classifying tweet languages.

Implementation.
For the implementation of the RNN, we use the Deeplearn-

ing4j library DeepLearning4j - Deep Learning for Java. We

2

https://blog.twitter.com/2015/evaluating-language-identification-performance
https://blog.twitter.com/2015/evaluating-language-identification-performance
https://blog.twitter.com/2015/evaluating-language-identification-performance
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Figure 1: Simplified representation of the RNN

initialize an RNN and feed in a character at a time. These
characters are represented by sparse vectors that are 1 at the
index reserved for that character, and 0 at all others. As we
have approx. 250 unique characters in the first group, the
dimension of these sparse vectors is 1 x 250.
This input vectors go through the input layer with a tanh
activation function. The input layer then feeds into a hidden
layer of size 50 that uses the same activation function. For
both these layers, we use LSTM cells as they have proven
to be most effective with RNNs (as they solve the vanishing
error back flow, see Hochreiter and Schmidhuber 1997).
Then comes the output layer with a softmax function (a
maximum entropy classifier), that outputs the likelihood of
each language at each given time step.
During classification, we look for the highest probability over
the whole sequence, and decide for that language. Ideally,
this should look like in figure Cho et al. 2014.

To speed up the training process, we spent quite a bit of
time trying to run our RNN on a GPU using the CUDA
functionality of the DeepLearning4J library. Unfortunately,
as it turns out, this CUDA component was in the middle
of a heavy rewrited by its developers and was not in a sta-
ble enough state to get working. This not only added more
time, but hampered our ability to perfect the RNN’s hyper-
parameters, as the time cost of an in-depth hyperparameter
search would have been too great to perform without the
GPU speedup.

3.2 Features

3.2.1 Frequency Features
The most intuitive set of features was simply to take the

words in each language and build a dictionary of works
ranked by their number of usages. In order to use less mem-
ory, only a subset of the most frequent words could be stored
for each language. This approach was also described in ??.
One problem of this approach is that it only works for scripts
that have spaces between words. For languages like Chinese
or Japanese, one would first need to run another classifier to
decide which characters form one word to be able to create
a dictionary.

3.2.2 N-gram Features
A more suitable set of features for this problem is char-

acter n-grams. In part, this is because of the whitespace is-
sue mentioned in the previous section. It is also well-suited
to the task because working with Twitter data provides a
convenient 140-character cap to the input data. However,
special pre-processing needs to be done, in addition to the

Table 1: Most frequent n-grams for some selected
languages

Most frequent n-grams

English they, them, the , allah, you , n the, and
French s de , est , pour , tion , ment , des , pour
Spanish tros , dios, s de , de l, o que, s que, los
German die , allah, n und, der , sie , ist , und
Czech jsme, jsme , jest , kdož, jich , jest, b̊uh
Slovak alebo, baĺık, použ, lebo , ktor, enie , baĺı

Japanese
言った, あなたがた, なたがたの, ならない。, の

である。, わたしたち

steps mentioned in the previous section, before training and
classification can be performed effectively. Users’ @-handles
and hashtags are commonly in English, or at least in Latin
characters, regardless of the language being spoken, so these
tokens need to be ignored to avoid polluting our n-gram fea-
ture counts. Emoticons or emojis (i.e. pictographic symbols
defined in Unicode) may also be ignored, or they may be
included if the use of certain emoji is indicative of a certain
language. Lastly, whitespace characters were replaced with
an underscore character.

Rather than store the counts of all our n-grams, which
would have required a huge amount of data storage and
slowed down our system considerably, we performed our
counts and only stored the top k results for each language.
We tried different values of k, ranging from 1000 to 5000.

As for the most effective size of n-gram to use, we simply
ran our n-gram classifier on a range from size 2 to size 6
to find the most effective size. We also tried collecting n-
grams of multiple sizes. The results are discussed in the next
section.

Some of the most frequent n-grams can be seen in table
1. Usually short, frequent words, like pronouns, articles and
conjunctions, make it to the top. However, in some lan-
guages like Czech, pronouns are used less frequently as the
information about the gender is already contained in the
verb. Instead, frequent words like ”be” (”jsme”) make it to
the top. Also, frequent syllables, like ”tion ” in French, make
it to the top.
For languages that use a different script, like Japanese, the
type of n-grams can differ. In the Japanese script, each
character is equal to 2 or 3 English characters, and there-
fore, while there are still only 5 characters per n-gram, much
longer words can make it to the top. So the n-grams for
Japanese contain mainly combinations of pronouns and prepo-
sitions or conjugated verbs in combination with prepositions.
As a big part of our training data is the Quran, various varia-
tions of the word ”Allah” or God show up in most languages.

4. RESULTS

4.1 Baseline
Our baseline system selected the most frequent word from

each language. If any of the most frequent words were found
in the input text, it would be classified into the language. As
expected, this baseline has a low performance of just 22,3%,
as shown in table 2.

Frequency classifier.

3



Baseline Frequency Bayes
Accuracy 0.223 0.824 0.948

Table 2: Accuracy for the different classifiers, tested
on 1000 test sentences per language, trained on the
first 10000 paragraphs

Figure 2: Accuracy depending on the number of
features (5-grams) used

Top k Features Used

0 1000 2000 3000 4000 5000 6000

A
c
c
u

ra
c
y

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
5-grams: Effect of Top k Features on Accuracy

Using the top 100 most frequent words in place of the one
most frequent word increased the span for the algorithm.
This in turn led to an improvement on the baseline by ap-
prox. 60% (see table 2).

4.2 Bayes
With Bayes classification, we tested the output with dif-

ferent n-gram lengths. The accuracy for each is shown in
table 3. Based on the accuracy, 5 was the best performing
length for n-grams. The accuracy was almost 95% using
10000 paragraphs for training and 1000 for testing.
We also tested how using ranges of n-grams (meaning we
used bigrams, trigrams,... at the same time) would influ-
ence accuracy. Interestingly, using just 5-grams still had
the best accuracy, although using 3-5 grams came very close
in accuracy. Including bigrams as well decreased the ac-
curacy, though, as bigrams overall appear more frequently
than other n-grams, and would therefore be more likely to
included in the feature set. Since bigrams are the shortest,
they are also the most likely to be shared across languages,
and therefore reduced the accuracy.

We tested the accuracy and speed of the algorithms by
varying certain parameters. Figure 4 shows the effect of in-
crease in number of features on the accuracy. As expected,
the accuracy increased with the increase in number of fea-
tures; but, the plot shows that we may have been getting
close to a saturation point after which further improvement
would be negligible.

Since the long-term goal is to be able to classify Twitter
data, which usually consists of shorter sentences, we tested
the algorithm with simulated twitter data (as described in
section 2.1.1) on varying sentence lengths. The performance
is stable with 15 words and more, and starts dropping when
the sentences are shorter. The accuracy still stays over 90%

Figure 3: Using different ranges of n-grams, from
2-to-5 all the way to 5-to-5

n-gram Range

2-5 3-5 4-5 5-5

A
c
c
u
ra

c
y

0.93 

0.935

0.94 

0.945

0.95 

0.955

0.96 
N-gram Classifier Accuracy

Figure 4: How the accuracy of our n-gram classifier
holds up as we use smaller and smaller sentences

Number of Words

0 5 10 15 20 25 30 35

A
c
c
u
ra

c
y

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Sentence Length of Input vs. Accuracy

4



Figure 5: Our entire confusion matrix, summarizing
the overall classification accuracy of our system

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Confusion Matrix for n-gram Classifier

L
a

n
g

u
a

g
e

 C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

for 7 words or more though, and only drops slightly below
88% when the sentences consisted of 5 words only. The
results can be seen in figure 4.

4.2.1 Analysis of the Confusion Matrix
For a detailed analysis we looked at the performance of

our classifier by language and computed a confusion matrix
(see figure 4.2.1) to be able to see which languages are most
likely to be missclassified as each other. 62 languages had an
accuracy of 99% or higher, while only 14 languages scored
lower than 80%. 26 languages scored between 80-90%.
The languages that were either completely or nearly com-
pletely correctly classified usually either had a unique writ-
ing system, a unique set of characters only used by this lan-
guage, or were not related with any other language in our set
and could therefore be classified based on their very unique
n-grams. An example of the latter is Oromo, a language spo-
ken by more than 40 million people in east Africa (https://
en.wikipedia.org/wiki/Oromo_language#Sounds_and_orthography),
that, although it uses Roman characters and no special char-
acters, can be easily told apart from the other languages in
our set by it’s unique style of writing with many double char-
acters: ”Baayyinaa ummataan garuu sadarkaa sadaffaarra
jirti, kunis Eshiyaa fi Afrikaatti aanteti.”.
The languages with the lowest performance were pairs of
closely related languages that shared many n-grams with
each other. By far the worst performance was Malay with
an accuracy of only 15.7%. Malay is very closely related to
Indonesian, and was misclassified as Indonesian over 80% of
the time.
In a similar fashion, Serbian reached an accuracy of only
68.1% and was most often (22.7%) misclassified as Croat-
ian, to which it is closely related. In 3.6% of the cases it was
misclassified as Bosnian, the third of these closely related
language that also appear as one group of the DSL shared
task, as do Malay and Indonesian.
It also often misclassified Danish as Norwegian (23.7%).
Some research on those two languages showed, although
they differ in pronunciation, their writing system shares the
same special characters (æ, ø and å) and they have sim-
ilar vocabulary (http://blog.jensen-localization.com/

en/2013/07/are-danish-and-norwegian-languages-so-close-

as-we-imagine.html). These results show that while the
Bayes classifier works well overall, it is not able to capture
the subtle differences between languages that share not only
the same alphabet, but are also similar in structure and vo-
cabulary.
Some of the error is not due to closely related languages,
though, but simply to noisy data. We noticed that some
files, like English and Chinese, have many HTML tags in
them, as parts of their data was copied from online re-
sources. Therefore Korean and Chinese, although both hav-
ing a unique set of characters, don’t have close to perfect
accuracy, but achieve only 72% and 57.6%, respectively.
The rest of the time both are misclassified as Iloko, a lan-
guage spoken by people in the Philippines, although neither
is related to it (https://en.wikipedia.org/wiki/Ilocano_
language). But in all three data sets, HTML tags appear,
and therefore their learned language models are similar.
English, although achieving a solid accuracy of 98.1%, is
misclassified as Chinese in 1.7%, also due to the HTML tags
that appear in the English data set.
Czech and Slovak, although usually considered as very closely
related languages, and a group that also appear in the DSL
shared task, had both solid results of 98.6% and 92.8%, re-
spectively. While those two languages are mutually intelli-
gible, both languages have their own unique set of special
characters which makes it easier for the classifier to build
up differing language models (https://en.wikipedia.org/
wiki/Comparison_of_Slovak_and_Czech).

4.3 Logistic Regression
For the testing of the Logistic Regression classifier we

could use only 1000 features for each language, as we ran
into ”out of memory” issues when training on more features
(and even when using 1000 features with 6-grams). As ex-
pected, the results are a little bit lower when training on
a smaller feature set. We therefore reran our tests on the
Bayes classifier to be able to compare the results of both to
each other. The results can be seen in figure 6. As both
are linear classifiers and both use the same set of features,
the performance is very similar. Only for bigram features
the performance of the Logistic Regression classifier is much
worse than the Naive Bayes, and drops to 26.3%. We are
not sure why there is such a huge gap, since both classifiers
use the exactly same set of features and the same data set
for both training and testing.
Additionally, logistic regression significantly reduced the clas-
sification time (measured for testing 200,000 sentences) by
1/3rd. This is shown in Figure 7.

4.4 Twitter Data
With the Twitter data, we received an accuracy in the

range of 80% to 89.7%. Our tests on the simulated twit-
ter data (section 4.2) showed that the accuracy stays quite
high as long as the sentences have 7 words or more, which is
true for most tweets. The lower performance is therefore not
only due to the shorter length of the sentences. There are
many reasons for the lower performance in this case. First
of all, there was less data to train the classifier on. Secondly,
the nature of the data is more difficult. Thirdly, the tweets
contained a high number of emojis, special characters etc.
They also spelled words in a non-standard way (abbrevia-
tions, spelling mistakes, leaving out special characters out of

5

https://en.wikipedia.org/wiki/Oromo_language#Sounds_and_orthography
https://en.wikipedia.org/wiki/Oromo_language#Sounds_and_orthography
http://blog.jensen-localization.com/en/2013/07/are-danish-and-norwegian-languages-so-close-as-we-imagine.html
http://blog.jensen-localization.com/en/2013/07/are-danish-and-norwegian-languages-so-close-as-we-imagine.html
http://blog.jensen-localization.com/en/2013/07/are-danish-and-norwegian-languages-so-close-as-we-imagine.html
https://en.wikipedia.org/wiki/Ilocano_language
https://en.wikipedia.org/wiki/Ilocano_language
https://en.wikipedia.org/wiki/Comparison_of_Slovak_and_Czech
https://en.wikipedia.org/wiki/Comparison_of_Slovak_and_Czech


Figure 6: Comparison of the performance of the
Bayes and Logistic Regression classifier on different
n-grams. 1000 Features were used.

ngram Size

2 3 4 5 6

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bayes vs. Logistic Regression: Accuracy

Bayes

Log. Reg.

Figure 7: Comparison of the classification time of
200,000 sentences the Bayes and Logistic Regression
classifier with different n-grams. 1000 Features were
used.

ngram size

2 3 4 5 6

T
im

e
 t
o
 t
ra

in
 d

a
ta

s
e
t 
(s

)

100

200

300

400

500

600

700

800

900

1000

1100
Bayes vs Logistic Regression: Time

Bayes

Log. Reg.

Figure 8: Performing a beam search can be done
without a serious degradation in accuracy

ngram size

1 2 3 4 5 6

A
c
c
u

ra
c
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Twitter Data: Effect of ngram Ranges on Accuracy

laziness). This would cause some noise during the training
process. Also, the length of each tweet was limited to only
a few words once the hashtags and references were removed,
reducing the sentence length further. As the sentence length
was lower, accurate classification became more difficult.

Testing with different n-gram lengths, we could see that
the best performance was found at the n-gram length 3-5.
Figure 8 shows the comparison of the accuracy for each of
the n-gram selections.

4.5 Optimization
Since both our features space as well as our class space

is extremely big, the classification of each sentence requires
the Bayes classifier to compute the probability for each of
the 200 languages based on all 5000 features. While this is
still quick for a single sentence, testing 1000 sentences from
each language (so 200,000 sentences in total) takes a consid-
erate amount of time. If one would now want to scale this
up and classify millions of twitter tweets that come in every
day, the algorithm needs to run faster.
For this, we implemented a beam search style algorithm,
that first takes a subset of our feature space to decide for
the most likely n languages, and then outputs the most likely
language based on the full set of features out of this list.
Of course some accuracy is lost when using this approach,
but the speed of the algorithm improves considerably. When
using the top 100 n-grams as features for the first classifica-
tion round, the accuracy drops by approx. 5% (depending
on the beam size used), but the algorithm runs nearly twice
as fast. Results can be seen in figure 9 and 10.
When using the most common 1000 n-grams in the first
subset, the accuracy decreased by less than 1%, while still
gaining more than 30% in speed. The results are shown in
figure 9 and 10.

Since we noticed that the Logistic Regression classifier was
much faster during classification time, we implemented an-
other 2-step classificator that first uses a Logistic Regression
classifier with 1000 features to output the n most likely lan-
guages, and then used the Bayes classifier with 5000 features
to decide for the most likely language out of this set. In this

6



Figure 9: Performing a beam search can be done
without a serious degradation in accuracy

Size of beam

5 10 15 20 25 30

A
c
c
u
ra

c
y

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Beam Search vs. Accuracy

Top 100 Features

Top 1000 Features

Stacked Search

Acc. with no beam

Figure 10: Performing a beam search can signifi-
cantly improve classification time

Size of beam

5 10 15 20 25 30

T
im

e
 (

m
s
)

300

400

500

600

700

800

900

1000
Beam Search vs. Time

Top 100 Features

Top 1000 Features

Stacked Search

Time with no beam

Table 3: Performance of the Bayes classifier on the
DSL shared task set with 5-grams and 5000 features

Bosnian,
Croatian,
Serbian

Indonesian,
Malaysian

Czech,
Slovakian

Accuracy 0.867 0.950 0.995

Table 4: Performance of the Logistic regression clas-
sifier on the DSL shared task set with 5-grams and
5000 features

Bosnian,
Croatian,
Serbian

Indonesian,
Malaysian

Czech,
Slovakian

Accuracy 0.854 0.959 0.999

way, we benefited form the speed of the Logistic Regression
classifier (the classification time dropped to nearly a third),
while still maintaining the high accuracy of the Bayes clas-
sificator (the performance drops by just 1%, even on small
beam sizes). Results can be seen in figure 9 and 10.

4.6 DSL shared task
As our classifier performed poorly on some very similar

languages, like Malay and Indonesian, or Serbian, Bosnian
and Croatian, we used the DSL shared data set to see how
the performance could be improved for those languages.
In a first step, we tested our existing classifiers on this data,
and then used an RNN to try to improve the performance
where the linear classifiers were struggling.

4.6.1 Bayes
The results in table 3 show that our 5-gram Bayes classifier

works well for the groups Czech and Slovakian, as well as for
Malay and Indonesian, while it scores significantly lower on
the first group, Serbian, Bosnian and Croatian.

4.6.2 Logistic Regression
Similarly, when classifying Indonesian from Malaysian and

Czech from Slovakian the Logistic Regression classifier per-
formed very well with 95.9% and 99.9%. During classifica-
tion of Bosnian, Croatian and Serbian the performance was
a comparatively lower 85.4%.

4.7 RNN
When training the RNN on a small data set, and test-

ing on the same data set, it overfitted quickly with an error
rate of nearly zero percent and showed that the approach
could potentially work really well. The result vector starts
off with equally distributed probabilities over all labels, and
then gets more sure of each label when the sequence pro-
gresses.
Unfortunately, though, when training on the full data set,
the algorithm did not converge, but stagnated around 30%
accuracy. This could be due to the fact that the hyper
parameters are not perfectly tuned, but we did not have
enough time to test out all sorts of different parameters.
Also, due to the long training time, we could train the RNN
only for a couple of hundred iterations, which is most likely
not enough.
Furthermore, maybe assigning each character in a sequence a
label is a too strongly constrained, and instead there should

7



be only one label outputted at the end of each sentence.
This could be achieved with a Encoder/Decoder-style RNN
as used in Machine Translation nowadays, where the input
sequence is first encoded into a feature vector by a first RNN,
and then decoded by a second RNN which then decides for a
label, as described in ??. This could be an interesting thing
to try out in the future.

5. CONCLUSION

5.1 Outlook & Future Work
So far, our classification system has performed better than

expected, with an accuracy in the 90 percent range and a
reasonable classification time. As we anticipated, there were
issues classifying certain, very similar languages, but that is
to be expected from any large scale language classification
system. The question becomes, then, how to proceed fur-
ther.

There are two main goals we would like to achieve. First
and foremost, we would like to push up our accuracy. Sim-
ply improving the overall accuracy, however, is not enough
to give us an effective system. There are specific “problem
languages” that have an unusually high chance of misclas-
sification, and if speaking members of those languages can-
not rely on the classification system, then our system has
failed to be a globally effective system. Therefore, further
approaches for training on the DSL corpus would be a good
first step.

The RNN, of course, is one way to do that. Perhaps,
with the right balance of hyperparameters, an RNN system
would work well on the DSL corpus. As such, perhaps a hy-
brid classification system would be useful, where an n-gram
classifier is used to classify most languages and an RNN is
used for the most problematic languages.

The other important component is time. Since this system
is intended for Twitter data, it would most likely be used
in a web setting and therefore, classification time needs to
be as quick as possible while still maintaining an acceptable
level of accuracy. Our stacked beam search was an impor-
tant step in this direction, and there are likely additional
optimizations that we could make.

6. ACKNOWLEDGMENTS
We would like to thank Dr. David Jurgens for inspiring

us to take on this problem and for his continued mentorship
throughout this process.

References
Chew, Yew C., Yoshiki Mikami, and Robin L. Nagano (2011).

“Language Identification of Web Pages Based on Improved
N-gram Algorithm”. In: International Journey of Com-
puter Science Issues 8.3.

Cho, Kyunghyun et al. (2014). “Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical Ma-
chine Translation”. In: CoRR abs/1406.1078. url: http:
//arxiv.org/abs/1406.1078.

DeepLearning4j - Deep Learning for Java. http://deeplearning4j.
org/about.html. Accessed: 2015-11-19.

Grefenstette, Gregory (2014).“Comparing two language iden-
tification schemes”. In: pp. 58–67.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long
Short-Term Memory”. In: Neural Comput. 9.8, pp. 1735–
1780. issn: 0899-7667.

King, Ben, Dragomir Radev, and Steven Abney (2014). “Ex-
periments in Sentence Language Identification with Groups
of Similar Languages”. In: Dublin, Ireland, pp. 146–154.

Porta, Jordi and Jose Luis Sancho (2014). “Using Maxi-
mum Entropy Models to Discriminate between Similar
Languages and Varieties”. In: Dublin, Ireland, pp. 120–
128.

Souter, Clive et al. (1994). “Natural Language Identification
using Corpus- Based Models”. In: Journal of Linguistic
13.

Zampieri, Marcos et al. (2014).“A Report on the DSL Shared
Task 2014”. In: Proceedings of the First Workshop on Ap-
plying NLP Tools to Similar Languages, Varieties and Di-
alects, pp. 58–67.

8

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://deeplearning4j.org/about.html
http://deeplearning4j.org/about.html

	Introduction
	Related Work

	Datasets
	Big Dataset
	Simulated Twitter Data

	Twitter Dataset
	DSL Shared Task

	Implementation
	Algorithm
	Data Preprocessing
	Bayes Classifier
	Logistic Regression
	RNN

	Features
	Frequency Features
	N-gram Features


	Results
	Baseline
	Bayes
	Analysis of the Confusion Matrix

	Logistic Regression
	Twitter Data
	Optimization
	DSL shared task
	Bayes
	Logistic Regression

	RNN

	Conclusion
	Outlook & Future Work

	Acknowledgments

